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A bstract

My thesis describes results in two areas: operant conditioning and vision.

Operant conditioning. It has been traditionally assumed that operant 

conditioning is either driven by events in the recent past (local or short­

term memory processes) or by events in the more remote past (global or 

long-term memory processes). These views have been extremely influen­

tial in the operant conditioning community and have imposed severe con­

straints on the experimental and theoretical analysis of behavior for over 

50 years. However, increasing evidence suggests that neither local nor 

global models provide a satisfactory description of all data. Local mod­

els lack the capacity to encode events in the remote past, whereas global 

models are relatively insensitive at short time scales. By combining ex­

perimental and modelling techniques I propose here an alternative view 

which claims that learning is driven by both local and global processes. 

Based on interactions between short- and long-term memory mechanisms 

I propose a real-time model that explains the major static and dynamic 

properties of operant behavior in both single-choice and multi-response 

situations. The model is utilized to advance new predictions by devising 

a set of theory-guided experiments that investigate how the combined 

effect of long-term training history and reinforcement probability affects 

operant behavior.

Vision. Spatial vision is context dependent, i.e., the perceived visual 

attributes of a target stimulus depend on the context within which the 

target is placed. Geometrical illusions, which are context-induced sub­

jective distortions of visual features, such as length, orientation, or cur­

vature of lines, are the most striking example. Physiological studies that 

use stimulus configurations similar to those used in the psychophysics of 

visual illusions have demonstrated that responses of orientation-selective 

cells in visual cortex can be suppressed or facilitated in the presence of an
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oriented visual context in the same direction as the perception of lines is 

facilitated or suppressed by surrounding line elements. To understand the 

fundamental properties of context-dependency at the physiological and 

perceptual level I use a combined modelling and psychophysical approach 

with which to investigate surround-dependent effects in visual cortex, as 

well as psychophysical phenomena such as geometrical illusions of orien­

tation and extent. I propose a model of visual processing in the primary 

visual cortex that reconciles conflicting experimental data reporting both 

suppressive and facilitatory orientation-dependent context effects. The 

model suggests a new role for intracortical connections and cortical feed­

back projections and suggests explanations for the genesis of geometrical 

illusions of orientation and extent. Psychophysical experiments are used 

to investigate the nature of the Miiller-Lyer geometrical illusion, one of 

the best-known and most extensively investigated geometrical illusions, 

by showing striking correlations between the perceived length distortion 

in the Miiller-Lyer illusion and ’low level’ visual processing such as de­

tectability of a luminance bar (target), in stimulus configurations that 

contain a single set of inward and outward-pointing arrowheads.

tv
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The Dynamics of Operant Conditioning

A b stract

Existing models for free-operant and discrete-trial instrumental learn­

ing are relatively insensitive to historical properties of behavior and ap­

plicable to only limited data sets. I propose a minimal set of principles 

based on short- and long-term memory mechanisms that can explain the 

major static and dynamic properties of operant behavior in both single­

choice and multi-response situations. The critical features of the theory 

are: (a) that the key property of conditioning is assessment of the degree 

of association between responses and reinforcement and stimuli and re­

inforcement; (b) that contingent reinforcement is represented by learning 

expectancy, which is the combined prediction of response-reinforcement 

and stimulus-reinforcement associations; (c) that the operant response 

is controlled by the interplay between facilitatory and suppressive vari­

ables which integrate mismatches between expected (long-term) and ex­

perienced (short-term) events; (d) that very long-term effects are en­

coded by a consolidation memory. Learning dynamics in this model are 

sensitive to the entire reinforcement history. The model predicts the 

qualitative features of operant phenomena such as response selection, 

contingency effects, effects of reinforcement delay, matching in choice 

experiments, development of preference, contrast effects, resistance to 

extinction, spontaneous recovery, regression, serial-reversal learning, and 

the overtraining reversal effect. The theory offers a small set of elemen­

tary principles that may help resolve the long-standing debate about the 

fundamental variables controlling operant conditioning. Experimental 

tests that covary reinforcement probability and length of training are 

devised to understand the genesis of choice behavior.
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Introduction

Theories of operant learning have traditionally emphasized static (asymptotic) 

principles: laws for stable equilibria that are largely independent of the organisms 

previous history. The best-known example is the matching law (Hermstein, 1961), 

according to which the proportion of responses to one choice alternative matches 

the proportion of reinforcements delivered by it. Equilibrium laws are useful, but 

do not take us very far towards understanding the underlying causal mechanism.

In contrast, dynamic theories specify how operant behavior is shaped by re­

inforcement in real time (or response-by-response). One of the most influential 

concepts in dynamic theories for operant conditioning is the ”leaky integrator” 

(Bush k  Mosteller, 1955), a linear operator whose output, response strength, in­

creases following each occurrence of an external stimulus (e.g., a reinforcement) 

and declines with the lapse of time in the absence of stimulation. The idea of leaky 

integrator is incorporated in virtually every dynamic model of operant condition­

ing (e.g., Luce, 1959; Myerson k  Miezin, 1980; Vaughan, 1982; Lea k  Dow, 1984: 

Staddon k  Zhang, 1991; Davis et al., 1993; Killeen, 1994). All these models have 

in common the hypothesis that the time constant of the integrator (which defines 

the temporal window of event integration) is fixed. A small time constant means 

high sensitivity to current events, but the effects of each event persist only for a 

short time; whereas a large time constant means low sensitivity to current events, 

but effects persist longer. Most current theories of operant learning are exclusively 

local (short-term) or global (long-term). With few exceptions (e.g., Davis et al., 

1993), local processes have been favored.

Local dynamic theories of operant conditioning predict behavior is on the basis 

of events (responses and reinforcements) in the recent past. Much can be explained 

with short-term (history-independent) models. For instance, a local model is suffi­

cient to explain effects which occur within one experimental session, such as PREE 

(e.g., Kacelnik et al., 1987), effects of reinforcement probability ratio and absolute 

difference on the development of choice behavior (Mazur k  Ratti. 1991; Mazur.
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1992).

However, operant conditioning is often history dependent the same set of ex­

perimental conditions lead to different performances, depending on earlier con­

ditions. Short-term dynamic models of conditioning cannot explain data showing 

that current performance is affected by remote reinforcement history. For instance, 

responding to a previously reinforced stimulus recovers after prolonged extinction 

(spontaneous recovery: see Robbins, 1991, for a review), the ability to perform 

reversals improves with increasing training (serial reversal learning: e.g., Davis k  

Staddon, 1990), and the partial reinforcement extinction effect (more resistance to 

extinction following partial reinforcement) is reversed (more resistance to extinc­

tion following continuous reinforcement) if training is extensive (reverse PREE: 

Nevin, 1988). Apparently, any realistic dynamic model must take into account 

events in the relatively remote past.

A problem with many global models is that they are relatively insensitive to 

events at short time scales. For example, there is recent evidence (Dreyfus, 1991; 

Mark k  Gallistel, 1994) that in concurrent VI-VI schedules animals are able to 

track local variations in relative rate of reinforcement and to attain matching more 

rapidly than previously thought. These results do not seem to be explicable by 

any process that relies exclusively on long-term dynamics1.

Since neither local nor global dynamic models provide a satisfactory descrip­

tion of all data, we hypothesize that learning is driven by both local and global 

processes. I here propose a real-time model of operant conditioning that involves 

processes at several time scales to explain the major static (asymptotic) and dy­

namic (transient) properties of reinforcement learning in animals. Consistent with 

the views of Tolman (1932), as well as with most of the classical conditioning 

theorists (e.g., Rescorla k  Wagner, 1972; Grossberg, 1982; Daly & Daly, 1982; 

Sutton & Barto, 1981, 1990; Klopf, 1988; Schmajuk & DiCarlo, 1992; Schmajuk,
l In fact, given a  suitable nonlinear response rule, such as winner-take-all, even a very long-term theory, such 

as the cumulative-effects (CE) model of Davis, et al., 1993, can explain results like those of Mark it Gallistel. But 
this model has other limitations, as we show below.
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in press), I hypothesize that the organism generates expectancies or predictions 

of future events based on the experienced reinforcement. However, unlike existing 

theories, we analyze the dynamics of conditioning by defining two expectancies: 

a short and a long-term expectancy (a third, long-term, process is also needed to 

account for a few effects). I describe the essential properties of acquisition and ex­

tinction in real-time operant behavior in terms of the interplay between these two 

expectancies (previous versions of the theory were presented in Dragoi, in press, 

and Dragoi Staddon, 1993).

O verview

The focus here is on operant behavior in transition, i.e., the paths through which 

equilibria (stable states) are reached. I look at response rate as dependent vari­

able, leaving temporal discrimination for later development. (This can be justified, 

because some species that show the major phenomena of operant learning, show 

poor, or no, temporal discrimination: e.g., goldfish, Rozin, 1965). I consider the 

length of training (number of reinforcements or extinction trials) as a key vari­

able which distinguishes between two classes of phenomena with different time 

courses. The dynamics of responding axe analyzed in the following situations: (a) 

Effects that are defined within a few experimental sessions: assignment of credit 

(response selection, delayed reinforcement, delayed reinforcement and preference 

reversal, the effect of noncontingent reinforcement); development of preference in 

choice behavior (effects of ratio and absolute difference between the reinforcement 

probabilities); matching; successive contrast effects; behavioral contrast effects; 

partial reinforcement extinction effect; overtraining reversal effect; effects of con­

text on stimulus preference, (b) Effects that occur only after extended training-. 

effect of length of training on resistance to extinction (’’reversed PREE”); spon­

taneous recovery and regression; serial reversal learning (successive daily reversals 

and reversals in blocks of days).

The theory is based on the following behavioral principles:
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(1) Response competition. Operant response units mutually inhibit each other 

such that the stronger response will have a higher probability of occurring.

(2) Short and. long-term memory traces. Each response leaves a brief, decaying 

short-term memory trace. Associations between responses and the reinforcement 

leave both decaying short and long-term memory traces. The associations increase 

in strength with the degree of contiguity between responses and the reinforcement.

(3) Learning expectancy. The organism builds short- and long-term reinforce­

ment expectancies based on recent and remote association memory. Short-term 

reinforcement expectancy is defined as the product of response- and short-term 

memory traces. Long-term reinforcement expectancy is defined as the product of 

response- and the long-term memory traces. It is proposed a product rule here 

because some kind of nonlinear combination seems to be necessary to solve the 

assignment-of-credit problem (cf. Staddon h  Zhang, 1991, for a similar proposal).

(4) Expectancy mismatch drives the operant response. Long- and short-term ex­

pectancies are compared to detect deviations from learned contingency relations. 

Their difference controls the operant response. If short-term expectancy is greater 

than long-term expectancy (reinforcement is underpredicted, reinforcement condi­

tions are improving -  if reinforcement increases in magnitude or probability, for 

example) the strength of the operant response increases. This is termed behavioral 

excitation. But if short-term expectancy is greater than long-term expectancy (re­

inforcement is overpredicted, e.g., reinforcement decreases in magnitude or prob­

ability) the strength of the operant response decreases. This is termed behavioral 

inhibition. The amount of behavioral excitation or inhibition is proportional to 

the expectancy mismatch.

(5) Consolidation long-term memory. Short and long-term memory variables 

are both transient even long-term memory declines to zero eventually. To rep­

resent permanent changes, the model includes a consolidation long-term memory, 

which increases via slow changes in the association between behavioral excitation 

and the response. Consolidation long-term memory is effective in situations in
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which training is extended, allowing for differences between an ”experienced” and 

a ” naive” animal.

Similar principles apply to stimuli and responses2. Phenomena defined within 

a few experimental sessions using the interaction between principles (l)-(4), short 

and long time scales. Phenomena that occur only after extended training require 

principle (5): consolidation long-term memory, which has a time scale sufficient to 

capture the entire reinforcement history. Consolidation long-term memory is not 

necessary to explain transient effects, but it does not impair predictions derived 

from the other assumptions and is necessary to explain effects that depend on 

extended training.

T h e m odel

Figures 1 and 2 show the model’s structure and dynamic behavior. Figure 1A 

illustrates the overall structure of the model with two mutually inhibitory' re­

sponse units. Operant response units use their response strength outputs (X%s 

and X ^ )  to inhibit each other to ensure that the response with the higher asso­

ciative strength will be selected by the reinforcement. Notice that each response 

unit has its own internal structure and is controlled by a specific discriminative 

stimulus (5)) or Sp),  the only element shared with other units being the reinforcing 

stimulus ( S r.).

Figure IB (the response-unit diagram) shows the details of one response unit. 

Figure 2 illustrates the behavior of model variables. Responses (Xu),  defined in 

the conventional way as lever presses or key pecks, reinforcers (Sr ), and discrim­

inative stimuli (So), are binary events, i.e., they are equal to 1 when a response 

is generated, a unit of reinforcement is awarded, or the discriminative stimulus is 

turned ”ON” , and they are 0 otherwise.

2Stimuliand responses are Created completely symmetrically such that the assignment-of-credit analysis (below) 

works equally well for both.
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F igure 1 (A) Model diagram for two interconnected response units. Each response 

in controlled by a different discriminative stimulus. The reinforcement is 

common to both response units. Response competition is implemented by 

mutually inhibitory connections. (B) Detailed diagram of the model for one 

response unit. X rs: response strength, X r : response, X r?: response trace, 

S q '. discriminative stimulus, X s t - discriminative stimulus trace, S r: rein­

forcement, ws.w■ short-term memory for response-reinforcement associations, 

Wl m '. long-term memory for response-reinforcement associations, X s e - short­

term learning expectancy, X Lr : long-term learning expectancy, X r/: behav­

ioral inhibition, X'b e - behavioral excitation. (+) excitatory (fixed) connec­

tions, (-) inhibitory (fixed) connections.
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Responses and discriminative stimuli are assumed to leave traces which have 

the same time constant for both events (for simplicity, I ignore reinforcer traces). 

Figure 2 shows the dynamics of the model in a simplified situation in which a 3-sec 

response partially overlaps with the 2-sec reinforcement (discriminative stimuli are 

not considered, and therefore the superscripts, R  and S  in Figure IB. indicating 

responses or stimuli, are missing). The onset of reinforcement triggers the for­

mation of response-reinforcement associations (or response associative strengths), 

WSM u>£,v/> and stimulus-reinforcement associations (or stimulus associative 

strengths), tuf .v/ and wfM. These associations encode the temporal correlation be­

tween the trace of each response (X/tr) or stimulus (X s t ) and the reinforcement 

(S r ), i.e., the associative strengths are higher when the time lag between X r or 

So and S r is shorter. Response-reinforcement and stimulus-reinforcement associ­

ations are formed in parallel at two different time scales as short-term { u;fw) 

and long-term memory traces wf M) (Figures 1 and 2). When reinforcement

ceases to occur both memory traces decay, with the short-term memory decaying 

faster than the long-term memory (fci > k2).

One key assumption of the present theory is that reinforcement acts through a 

” novelty-detection” mechanism. Novelty means that the current experienced state 

of reinforcement must be compared with some ”expected” state. The response 

and stimulus traces read out the short and long-term associations (which act as 

multiplicative "connection weights” ) to generate short-term (A'se =  w§mX r?  + 

wssmX ST) and long-term ( X le =  ^ lmX rt +  wl m -̂ -s t ) learning expectancies. No­

tice that X'se  (short-term expectancy) is a measure of the experienced reinforce­

ment and X le (long-term expectancy) is a measure of the expected reinforcement. 

These expectancies are generated only when a response is emitted or when a stim­

ulus is ”ON” , and they gradually decay after the response ceases or the stimulus 

is turned ’’OFF” .
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Figure 2 Typical behavior of model’s various compartments. Responses are gener­

ated continuously between time units 2 and 4. The reinforcement is presented 

between time units 4 and 5. X r : response, X r?: response trace, S r: rein­

forcement, ws\['■ short-term memory for response-reinforcement associations. 

ivLM: long-term memory for response-reinforcement associations, k]_ and ko 

are proportionality constants, X s e '- short-term learning expectancy, X i r : 

long-term learning expectancy, X r i '- behavioral inhibition, X re : behavioral 

excitation, X r s '- response strength.
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Figure 2 shows that X le and X se  decay in the absence of responding. The 

mismatch between the short and the long-term learning expectancies controls the 

operant response: if the reinforcement is underpredicted (experienced reinforce­

ment is larger than expected reinforcement, i.e., X s e  >  X l e )  a behavioral exci­

tation signal proportional to the difference between the short-term and the long­

term expectancies (X be ~  X se — X le) enhances the response strength (X rs); 

if the reinforcement is overpredicted (experienced reinforcement is smaller than 

expected reinforcement, i.e., X se < X LE) a behavioral inhibition signal propor­

tional to the difference between the long-term and the short-term expectancies 

( X bi ~  X le — X s e ) reduces the response strength. Figure 3 shows that when the 

response and the reinforcement are active simultaneously (both short and long­

term associations increase in strength) behavioral inhibition decreases and behav­

ioral excitation increases (X se > X l e)- A s  soon as the reinforcement drops to 

0 behavioral inhibition increases at a high rate whereas behavioral excitation re­

duces its rate of increase. Behavioral excitation will decrease as soon as the slowly 

decaying X le becomes greater than the rapidly decaying X se (in the current ex­

ample the level from which the two expectancies decay prevents the two curves to 

cross). Finally, the end result of pairing the response and the reinforcement is the 

fact that the response gradually increases in strength (X rs in Figure 2).

Theoretical principles 

R esponse com petition

Most theories of operant conditioning that deal with choice assume the existence of 

separate representations for each response, e.g., Luce (1959), Davis et al. (1993), 

Schmajuk (in press). I also represent alternate responses by separate response- 

strength units: X rr in Figure 1. The level of the X ^ s  unit represents in real time 

the momentary preference for alternative i , where this alternative can be pecking 

key i, pressing lever i, etc. X rs is functionally equivalent to the idea of response
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strength or V-value used by other theories (Luce, 1959: Rescorla L  Wagner, 1972: 

Staddon & Zhang, 1991; Mazur, 1992; Davis et al., 1993; Killeen, 1994).

In operant conditioning, every response followed by a reinforcer increases in 

strength (becomes more likely to recur). Consequently, the probability of respond­

ing to other alternatives (when they exist) must decrease. In other words, if X lRS 

increases then X j^  should decrease, and vice-versa. A simple implementation of 

this response-competition rule is the process of lateral (mutual) inhibition (see 

Figure 1). In the model, interresponse inhibition is mediated by fixed connec­

tions between the output units, and X rs (see Equation 1, where the term 

—QiXfts X'-Rs, represents response inhibition).

d X i ~ — X r s ) ~~ a 2 ^ B I ^ R S  ~~ X] ̂ R S  U)ar i#l.

X BE is the output of the behavioral excitation unit, X Bl is the output of the 

behavioral inhibition unit, X rs  is the output of the ”j” th competing response 

strength unit; a i controls the spontaneous decay of X'rs, q.2 controls the strength 

of excitation from X lBE, <23 controls the strength of inhibition from X BI. and a 4 

controls the strength of mutual inhibition between responses.

The mutual inhibition process is behaviorally motivated by positive and neg­

ative contrast effects (Crespi, 1952; Reynolds, 1961; Gutman, 1977; Schwartz &c 

Gamzu, 1977), which suggest that the extinction/facilitation of one alternative 

(or component of a multiple schedule) disinhibits/inhibits the response pattern to 

the other alternative (or component of a multiple schedule). The idea of response 

competition is generally accepted; there is disagreement only on exactly how it 

should be represented in a model. For instance, Hermstein (1970) views the rate 

of response in one component of a multiple schedule as depending on the rate of re­

inforcement in the adjacent components, supporting thus a process of comparison 

(competition) of the value of one component to its neighbors. Staddon & Hinson 

(1978) use behavioral competition as a mechanism for schedule interaction. Davis 

et al. (1993) use a winner-take-all rule to model response selection, also supporting
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the idea of nonlinear response competition.

The next step in defining the operant response is to convert the set of values of 

the X rs units into discrete responses: to get from a configuration of X rs values 

to an individual response. In conformity with the stochastic assumption used br­

other models of reinforcement learning, e.g., Luce (1959), Mazur (1992; 1995), 

it is assumed that an individual response X lR is generated with the probability 

p(Ri) =  X r s/  I ^ jX x s ,  where the sum from all X rs units is taken. X R is set to 1 

if the subject responds to alternative i (according to the value of p(/?t-)), and is 0 

otherwise.

Short-term  m em ory (STM ) response trace

The existence of an STM response trace is justified by experimental results show­

ing that operant conditioning can occur even if reinforcement is delayed after the 

response (e.g., Chung & Hermstein, 1967; Killeen, 1968, 1970; McEwen, 1972): 

some effect of each response must persist for a short time. I assume that trace 

strength is directly related to response intensity and duration. (In the simulations. 

I assume that each response has a fixed unit intensity and duration). It is hypoth­

esized that the trace of each response, X RT, increases over time to a maximum 

during the response, and then decays to zero afterwards (see Equation 2; cf. Hull, 

1943; Sutton &: Barto, 1981, 1990).

= a 5(Xje -  X y )  (2)

where X R and X'r?  represent the response and the response trace, and a5 is the 

rate of increase and decay of X (see Appendix).

A similar equation can be written for the stimulus trace, X s D, where stimulus 

S q  replaces response X r . In addition to responses and discriminative stimuli, I 

have also tested the idea of STM traces for reinforcement, motivated by evidence 

that reinforcers can be used as trace discriminative stimuli. However, since I ob­

tained qualitatively similar simulation results with and without reinforcement STM
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traces, their use did not seem to constitute a necessary condition and therefore I 

decided to keep the model as simple as possible.

M em ory for response-reinforcement and stimulus-reinforcement associ­

ations

Following many suggestions from both experimental and computational neuropsy­

chology (e.g., Grossberg, 1982; McClelland &c Rumelhart, 1985; Schmajuk & Di- 

Carlo, 1992) that simple stimuli leave brief traces whereas associations between 

stimuli (particularly associations between stimuli and reinforcement) leave more 

persistent traces, I assume that associations between response and reinforcement 

and stimulus and reinforcement leave both short, and w§Xf, and long-term 

memory traces, u/£v and w f M, where R stands for response associations and S 

stands for stimulus associations. The difference between short and long-term lies 

in the rate of change of the memory traces, i.e., wsm varies faster than wlm.

Short-term associations

Short-term memory for response-reinforcement and stimulus-reinforcement asso­

ciations, w§M and w§x{, is a measure of the currently experienced correlation 

between X r  and S r  and between Sp  and S r . It consists of a set of connection 

weights with small time constant which increase every time that a new associa­

tion is formed, and then decrease until the occurrence of the following reinforced 

response (see Equation 3). If response X r  and stimulus Sp  are followed by re­

inforcement, w§M and w§M increase and enhance the associations formed with 

the reinforcement. Equation 3 shows that the changes in are driven by the 

product of X r t  and S r , i.e.,

+  a e X y S x  (3)

where X rj- is the trace of A'^ and controls the rate of increase and decay of 

wsm  (see Appendix). A similar equation can be written for the STM for Stimulus-
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C m
reinforcement associations, ujs \ : , where stimulus S o  replaces response X r . 

Long-term associations

Long-term memory for response-reinforcement and stimulus-reinforcement asso­

ciations, and wf M, is a  measure of expected reinforcement. Similar to the 

short-term memory for associations, it consists of a set of connection weights which 

increase every time that a new association is formed, and then decrease until the 

occurrence of the following reinforced response. Equation 4 shows that the changes 

in w ^M are driven by the multiplication between Xrr- and S r , i.e.,

=  - a 7w&, +  07*1a S R (4)

where ar controls the rate of increase and decay of , with q7 < <  a 6 (see Ap­

pendix). A similar equation can be written for the LTM for stimulus-reinforcement 

associations, , where stimulus S r  replaces response X r .

The similarity between u>sm  and wlm is that both reflect the strength of the 

associations between responses and reinforcement and between stimuli and rein­

forcement. The difference between these two parallel memory units is the time 

course of their integration: short-term memory integrates events over a small time 

scale, whereas long-term memory integrates events over a more extended time 

scale.

Learning expectancy

The response and stimulus traces, multiplied by their associative strengths, read 

out the corresponding short and long-term memory for associations and determine 

the short-term learning expectancy (a measure of experienced reinforcement) and 

the long-term learning expectancy (a measure of expected reinforcement). In Fig­

ure 1 the output nodes, X sb  and X le , represent the aggregate short and long-term 

learning expectancy at the level of one response unit.
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I assume that the initial values of the short and long-term memory for response- 

reinforcement and stimulus-reinforcement associations are nonzero, i.e., wR and 

ws , see Equation 5. In this way, if a response or a stimulus occurs in the absence of 

reinforcement, wR and ws  ensure that it can still have an effect (although small) on 

the overall learning expectancy, such that learning occurs at a lower rate. Evidence 

for this hypothesis is provided by the latent learning experiment (Tolman X  Honzik, 

1930) in which simply running rats through a maze with no food in the goal box 

does not prevent learning of a new response; rats not receiving any reinforcement 

can still learn to reach the goal box, but their performance (number of errors) is 

poorer than that of rats which were reinforced throughout the experiment.

Equation 5 expresses X se, as the algebraic sum of all the STM modules at the 

level of each response, i.e.,

X'se =  X lia:{uiRi +  w§l,r) 4- ]P  X ]ST(wSj + wSm ) (5)

/? S'where is the STM trace of X R, wsJM is the STM trace of the discriminative

stimulus S3D, Xftj- is the trace of X R, X JST is the trace of SJD, i6,H< is the initial

(fixed) level of the connection between X ^  and X'SE, and ws> is the initial (fixed)

level of the connection between X JST and X 1s e -

Equation 6 expresses X lLE as the algebraic sum of all the LTM modules at the 

level of response i, i.e.,

X'le = X 'xriw 11* +  u/£;Vf) +  X 3ST(wSj +  w ^ )  (6)
l=i

where is the LTM trace of X lR, is the LTM trace of the discriminative

stimulus S 3D, Xftr is the trace of X R, X 3ST is the trace of S^, w1̂  is the initial

(fixed) level of the connection between X and X lSE, and ws> is the initial (fixed) 

level of the connection between X 3ST and X lSE.
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Behavioral Excitation and Behavioral Inhibition

Gray (1971, 1982), following Pavlov (1927), suggested that a behavioral inhibi­

tion system, activated by signals of punishment or nonreward, innate fear stim­

uli, or novel stimuli, generates an inhibitory signal which reduces the strength of 

the current response. In line with this approach, the model proposes an ensem­

ble behavioral excitation - behavioral inhibition unit ( X be and X bi in Figure 1) 

whose main role is to detect variations in reinforcement contingency via short and 

long-term learning expectancies. If reinforcement conditions become better (larger 

size, smaller delay, increased duration, higher probability), short-term learning 

expectancy increases faster than long-term learning expectancy. If reinforcement 

conditions become worse (smaller size, larger delay, decreased duration, lower prob­

ability), short-term learning expectancy decreases faster than long-term learning 

expectancy. The X be unit integrates the difference (mismatch) between experi­

enced (short-term) and expected (long-term) reinforcement, i.e., X se ~  X le-, and 

the X bi unit integrates the mismatch between expected (long-term) and experi­

enced (short-term) reinforcement, i.e., X LE — X s e ■ lu other words, X Be increases 

whenever the reinforcement is underpredicted, i.e., X se — X le > 0, and decreases 

whenever the reinforcement is overpredicted, i.e., X se — X le < 0- X bi increases 

whenever the reinforcement is overpredicted, i.e., X le — X se > 0 , and decreases 

whenever the reinforcement is underpredicted, i.e., X le — X se < 0- After both 

X le and X se become 0, X be and X b i slowly relax to 0 . Equations 7 and 8 show 

that the mismatch between short and long-term reinforcement expectancies drives 

the dynamics of both X be and X b i»

- ^  =  - asX<BE +  a»(AjE - X i s ) ( l - A i £ ), (7)

d X i
=  —ocioX'B1 +  a u ( X le  -  X j£)»  -  X'BI), (8)

where X XLE Is the long-term learning expectancy, X lSE is the short-term learning

expectancy, ag and quo are rate constants of decay of X'BE and X ‘BI, and ag and
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a n  are rate constants of increase of X  BE and X b i (see Appendix). 

C onsolidation long-term  m em ory

The term "consolidation long-term memory” is suggested by neuropsychological

studies in which long-term memory is considered to have at least two components:

labile long-term memory, which is recently acquired and easily disrupted by head 

injury as in retrograde amnesia (Russell, 1971), and fully consolidated long-term 

memory (Squire et al., 1975) which is more persistent and resistant to injury. I 

use consolidation long-term memory to encode very persistent effects.

Consolidation long-term memory, wqlm (Figure 3), is updated using a corre­

lation rule (proportional to the activity level of both X be and X rs ), such that 

wclm varies very slowly in time (small rate constant). Equation 9 describes the 

dynamics of the consolidation long-term memory:

dWcLM  , „ v- v- rn\ —----  =  — Ot\2WCLM +  a 13 -X-Be X r s  ( 9 )at
where 0-12 controls the rate of decay of wqlm and controls the rate of 

increase of wclm, with Q12 < <213 (see Appendix). X'be is the behavioral excitation 

and X rs is the response strength. As Equation 9 shows, consolidation long-term 

memory expresses the association between behavioral excitation and the response, 

and therefore it represents the cumulative effect of all stimuli associated with the 

reinforcement, including the response.

If wclm #  0 the strength of the ”i” th response (A'j^) is given by the following 

equation:

dX'ns
=  —0:1 X xr<;+ (u.’i +  wclm)X 1rr (1 — XpR)—QtzXnrX lRs ~<%4X rs ^"1X ? (10)dt
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F ig u re  3 Consolidation long-term memory. Variable connection strengths be­

tween behavioral excitation and response strength (Wc l m)■
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where X'BE is the output of the behavioral excitation unit, X lBI is the output of 

the behavioral inhibition unit, X is the output of the ”j”th competing response 

strength unit; a i controls the spontaneous decay of A'j^, wx is the initial (fixed) 

level of the connection between X'BE and (numerically wx =  a 2 from Equation

1). The rest of the variables and parameters are identical to those from Equation 

1.

M odel dynamics

To illustrate the function of the model’s various components, I present simulation 

results from (i) acquisition of partial reinforcement (Figure 4), and (ii) extinction 

(Figure 5). In these simulations the duration of each response and reinforcement 

is equal to 1 sec. Figure 4A shows a response sequence generated during a fixed- 

ratio 3 schedule (FR 3: three responses axe needed in order to receive one unit of 

reinforcement). The partially reinforced sequence is: 101011000011111010011 (” 1" 

=  ’’response”, ”0” =  ”no response”), and runs for 20 time units (reinforcers oc­

cur at the black arrowheads). Each emitted response {Xu)  activates the response 

trace, i.e., the X rx  representation. Figures 4B and 4C show the characteristic 

response trace dynamics (running average of emitted responses) and the obtained 

reinforcement { S r ) as a function of time, i.e., the S r (reinforcement) sequence 

10000100000010001000. Each reinforcement enhances the short and long-term 

memory for associations, or response associative strengths, (wsm and iulm) via 

a correlation rule established between the response trace and the reinforcement. 

Because the associative strengths reflect the contiguity between the response trace 

and the reinforcement (and not between the short-lasting response and the rein­

forcement), it can be used as a basis for delayed conditioning. Figure 4, panels D 

and E, shows the long and the short-term memory traces for response-reinforcement 

associations. According to the present theory, these memory traces differ in only 

one important respect: the rate of change of wrm is high (small time constant) 

whereas the rate of change of wlm is low (large time constant). This behavior
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is clearly visible in Figure 4 (panels D-E): in lm is perturbed to a lesser extent 

compared to ws\r, before and after each presentation of the reinforcement. More­

over, the high rate constant of the short-term memory trace allows it to vary' at a 

higher rate compared to the long-term memory trace, a fact reflected in its larger 

magnitude. The magnitude of both short and long-term memory traces reflects as­

sociative strength and is influenced by response frequency, reinforcement frequency, 

reinforcement intensity and reinforcement duration.

The activity induced by the response gated by its short and long-term memory 

trace for associations determines the short-term learning expectancy (Xse)  and 

the long-term learning expectancy (Xle)-  Figure 4F shows the dynamics of both 

X LE and X s e - Notice that the dynamics of both X l e  and X s e  are driven by the 

dynamic profile of the response trace (this is because the response reads out the 

memory traces to determine the level of reinforcement expectancy). The magnitude 

of change in both X l e  and X s e  is proportional to the activity level of long and 

short-term memory traces for associations (low for X l e  and high for X s e )-

The occurrence of variations in reinforcement contingency is detected by the 

comparison between expected (long-term) events and experienced (short-term) 

events. If the organism underpredicts the reinforcement (experienced events are 

better than expected) then both X l e  and X s e  increase, a situation which favors 

the increase in behavioral excitation (Figure 4G). If the organism overpredicts the 

reinforcement (experienced events are worse than expected) then both X l e  and 

X s e  start decaying. Since the decay process happens at different rates (high for 

STM traces and low for LTM traces), after a certain number of nonreinforced 

responses the more persistent memory for expected reinforcement becomes more 

salient than the less persistent memory for experienced reinforcement.

In this way, the change in the current reinforcement situation is detected by the 

behavioral inhibition unit ( X b i ) which is driven by the difference between A'le  

and X s e  (Figure 4H).
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F igu re  4 Illustration o f model dynamics during acquisition (FR 3 reinforcement 

schedule). (A) Response sequence, X r , generated during 20 time units (each 

reinforced response is marked with a black arrowhead). (B) Response trace, 

X~r t , dynamics, (c) Obtained reinforcement, S r , as a function of time. (D) 

Long-term memory trace for response-reinforcement associations, wLM. (E) 

Short-term memory trace for response-reinforcement associations, - (F) 

Dynamics of long and short-term learning expectancy, X ^ r  and X SE. (G) 

Behavioral excitation. Xbe,  increases whenever the short-term learning ex­

pectancy is greater than the long-term learning expectancy (for instance dur­

ing training) and decreases otherwise. (H) Behavioral inhibition, X r i . in­

creases whenever the long-term learning expectancy is greater than the short­

term learning expectancy (for instance during extinction) and decreases oth­

erwise. (I) Response strength, X r s , increases with the accumulation of rein­

forcement.
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The output of the behavioral inhibition unit increases whenever both long-term 

and short-term expectancies decrease (for instance during extinction), and de­

creases otherwise. It is easy to observe that X b i 's profile shown in Figure 4H is 

out of phase with respect to the temporal dynamics of both X le  and X s e • As 

mentioned previously, the rate of change of the expectancy units is such that short­

term expectancy varies faster than long-term expectancy, i.e., | \ < | dXJ £ |.

When both expectancy units increase (the first time derivatives are positive) then 

~dtE <  theref°re — < 0 , i.e., the expectancy mismatch de­

creases, a fact that contributes to the decrease in the amplitude of behavioral inhi­

bition, see Figure 4 (panels F-H). When both expectancy units decrease (the first 

time derivatives are negative) then — * and therefore d(-XLE~x.SE) > o.

i.e., the expectancy mismatch increases, a fact that favors the increase in behav­

ioral inhibition (see Figure 4, panels F-H).

Figure 41 shows that when behavioral inhibition is negligible, like in the cur­

rent simulation, behavioral excitation controls the rate of change of the response 

strength unit, X r s  (the response strength increases with the accumulation of re­

inforcement).

Figure 5 shows the behavior of representative model elements during extinction. 

Figure 5A shows that the last reinforcement is presented at time -6 (the FR 3 

schedule is in effect until time 0, the moment when extinction starts). Figure 5B 

illustrates the decay of both short and long-term learning expectancy units, with 

X LE decaying slower than X s e - A s  soon as X l e  >  X s e , behavioral inhibition 

increases to positive values (Figure 5C) causing the decrease in response strength 

that matches the extinction situation. During extinction behavioral excitation also 

decreases (Figure 5D) due to the decay of both short and long-term expectancies. 

The net result of these effects is the response strength which gradually decreases 

(Figure 5E).
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F igure  5 Illustration of model dynamics during extinction. (A) The FR 3 schedule 

is in effect until time 0, the moment when extinction starts (no reinforcement 

delivered thereafter). (B) Long and short-term learning expectancies decrease 

at different rates: slow ( X l e ) and fast ( X s e )- (c) During extinction, behav­

ioral inhibition, X bi, becomes positive and suppresses the response strength. 

(D) Behavioral excitation decreases during extinction due to the decay of 

learning expectancy. (E) Response strength, X rs , decreases due to the sup­

pressive effect of behavioral inhibition.
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The Dynamics of Operant Conditioning

The present model is intended to account for the major phenomena of operant 

learning, particularly in recurrent choice situations with food reinforcement. The 

data set is the real-time pattern of responses under different manipulations of rein­

forcement probability as a function of time. I attempt to explain qualitative, and 

when possible quantitative, patterns of change in real-time operant responding. 

The theory allows us to model both steady-state and transient response during ac­

quisition and extinction under various conditions. In many situations predictions 

of the model are compared with experimental data. However, I will show only 

predictions without comparing them with data when the effects Iaim to explain 

reflect a well-known general property of operant conditioning which has been ob­

served in many experimental conditions and in different species or when the lack 

of complete procedural and performance information (e.g., other than ’’trials to 

criterion” ) makes detailed comparison impossible.

One difficulty which I experienced throughout simulations was to accommodate 

(using the same set of parameters) all the quantitative aspects of the data refer­

enced in this article, given that the data ought to be explained emerges from exper­

iments with various time-courses, ranging from hours, even days (e.g., spontaneous 

recovery) to one session (e.g., development of preference), and from experiments 

involving various species and responses (e.g., pigeons, rats, or starlings and peck­

ing, perch-hopping or alley-running). I therefore show quantitative predictions 

only for free-operant pigeon experiments with few training sessions. But in other 

cases - involving complex, incompletely specified or long-time-course procedures -  

I had to settle for qualitative matches between data and predictions. Nevertheless, 

I have done sufficient computer simulations (not presented in this article) to make 

sure that it is possible to match most real time courses by careful selection of an 

appropriate integration time step.

All the simulations in this section involve one or two operant responses, a rein­

forcement, and a discriminative stimulus for each response. Unless otherwise men­
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tioned, all the simulation results were obtained using fixed connection strengths 

between behavioral excitation and response strength. When the computer simu­

lations start, the activity level of all the variables is initialized to the same small 

random value (this manipulation is needed to eliminate any bias in responding). 

The reinforcement conditions axe signaled by the discriminative stimulus which 

switches from 0 to 1 and triggers one response at random.

The Appendix shows the numerical values of the parameters, held constant 

for all simulations. Each unit in the model has a fixed discharge rate (in the 

absence of any stimulation) equal to 0.0001. Loosely speaking, I have implemented 

three different time-scales: short (response trace, interresponse inhibition strength, 

short-term memory for associations), long (long-term memory for associations), 

and very long (consolidation long-term memory). Correspondingly, I have limited 

the parameter search to time courses of the following orders: 10-2 (short), 10-3 

(long), and 10-4  — 10~5 (very long). With these constraints, it was relatively easy 

to find a configuration of values that generates curves whose profile and relative 

time course approximately fit the profile of experimental data. The parameter set 

indicated in the Appendix probably represents one of the best configurations with 

respect to graphical appearance. However, the dynamics of the model are quite 

robust to perturbations in the parameter space. I found that the most sensitive 

parameters are those controlling the response strength unit, i.e., the connections 

between X bi — X us, X le ~  X rs, and X rs — X r s -

Response Rule, Reinforcem ent Contingency

X*Each next response, X lR, is generated with the probability p(Ri) =  - - from
2- j = l XRS

the set of N  available responses. If response X lR is generated, a random number 

between 0 and 1 is compaxed with the reinforcement probability for response i. 

If the random number is smaller or equal to the reinforcement probability, a re­

inforcement is set to 1 for one time unit (the same method used in experimental 

conditions during a concurrent VR-VR schedule). In the case of concurrent VI-VI
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schedules, the reinforcement is set up independently for each response alternative, 

and, once a reinforcement is set up, it remains available until collected. In the case 

of discrete-trial experiments, each emitted response, either reinforced or not, is fol­

lowed by a fixed ITI (intertrial interval) during which the discriminative stimulus is 

turned OFF. After the ITI, the next trial begins by turning ON the discriminative 

stimulus until the first response is recorded.

Assignment o f Credit

When reinforcement is contingent on a particular response, the probability of that 

response generally increases; when reinforcement ceases, becomes less frequent 

or is presented independent of responding, response probability should decrease. 

These issues axe incorporated under the Assignment of Credit problem, a first 

step toward the investigation of the mechanism through which the reinforcement 

selectively strengthens the ’’reinforced” response, a question which any theory of 

operant conditioning should attempt to answer. I will explain the major aspects 

of the Assignment of Credit problem based on the simulation results.

Response selection

Experimental data. Response selection is the first prerequisite of a dynamic model 

for operant conditioning. Sutton & Barto’s (1990) temporal-differences model 

and Staddon &c Zhang’s (1991) assignment-of-credit model address response selec­

tion. However, most other operant conditioning models (e.g., Myerson Miezin’s, 

1980, kinetic model, Killeen’s, 1994, model) take response selection for granted 

and do not show explicitly how reinforcement selects a response by decreasing the 

strengths of alternative responses as a function of contingency.

Response selection can be analyzed in a simple two-armed bandit situation. In 

this situation (concurrent VR-VR schedule) responses on a rich and a lean side are 

paid off with different probabilities (higher for the rich side). The problem can be 

stated as follows: (a) How does the organism select the ’’rich” response without
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explicit a priori ’’knowledge” of what that response is? (b) Why is the ”rich” 

response selected faster when reinforcement probability on the rich side increases?

Simulation results. To answer these questions, I consider a generic situation 

in which three different conditions are run under a concurrent VR-VR schedule. 

The lean side provides reinforcement with fixed probability, 0.1 (VR 10), while 

the rich side is set at three different levels, i.e., 1.0 (CRF), 0.5 (VR 2), and 0.25 

(VR 4). Figure 6A shows the proportion of responses on the rich side in each of 

these conditions as a function of blocks of 100 responses. As the reinforcement 

probability of the rich side increases, the rate of response selection also increases. 

This result is explained as follows. Let us assume that initially the subject samples 

both alternatives with equal probability, i.e., both X rs units are set to the same 

level.

Figure 6B shows the profile of the long-term memory trace for response- 

reinforcement associations3 for the ’’rich” side, from which it can be concluded 

that responses reinforced at a higher rate tend to form stronger associations with 

reinforcement, Wlm (cf. Equation 4). Figure 6C shows that behavioral excitation 

(A'b e ) for the rich side increases at a rate controlled by the payoff probability. This 

result is explained by the fact that the increase of both short and long-term mem­

ory traces for associations determines the increase of the learning expectancy units 

{Xse and X l e) at a rate proportional to the reinforcement probability. Therefore, 

behavioral excitation, which integrates the difference between the short and the 

long-term learning expectancy units, facilitates response strength unit by control­

ling its rate of increase. In this way, the ” rich” response is selected faster with the 

increase in learning expectancy.

3Short-term memory trace profile is similar except for the higher rate constant.
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Figure  6 Response selection. (A) Proportion of responses on the rich side as a 

function of blocks of 100 responses. Responses reinforced at a higher rate 

are selected faster (choice approaches fixation faster at higher reinforcement 

rates). (B) Responses reinforced at higher rates develop stronger associations 

with the reinforcement, wl m . (c) Rate of increase of behavioral excitation 

is positively correlated with the rate of increase of long-term memory* for 

response-reinforcement associations.
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At the same time, the competition between operant responses ensures that the 

strength of responses on the lean side wanes at the same time that responses on 

the rich side become stronger. In this way, after a sufficient number of responses 

the subject fixates on the rich side at a rate controlled by the corresponding rein­

forcement probability on the rich side (Figure 6A).

Delayed reinforcement

Experimental data. Both operant and classical conditioning data show that if 

the reinforcement (or unconditioned stimulus) is delayed, performance is usually 

disrupted (e.g., Logan, 1960; Renner, 1963). In both discrete-trial and free-operant 

situations, animals show a preference for the alternative associated with a shorter 

delay of reinforcement (Chung & Hermstein, 1967; Killeen, 1968, 1970; McEwen, 

1972) even though the probability of reinforcement on the two alternatives is the 

same.

Simulation results. Figure 7A presents a typical situation in which the effects 

of reinforcement delay are analyzed in a concurrent VR 10 - VR 100 schedule in 

which reinforcement for responses on the rich side is delayed (1 sec). I observe that 

the proportion of responses on the rich side in a 0 delay situation increases faster 

compared to the situation in which the rich side is reinforced with a 1-s delay.

According to the theory, the reinforcement strengthens short and long-term as­

sociations. The strength of response-reinforcement associations (Eqns. 3 and 4) 

depends on the magnitude of the product S r ■ X rt , where S r is the reinforcement 

and X rt is the response trace. In the interval between the emission of the last 

response and the occurrence of the contingent reinforcement, the trace of response 

gradually decreases. Therefore, any delay in reinforcement is equivalent to the 

increase in phase between response and reinforcement, event that causes the for­

mation of weaker response-reinforcement associations (Figure 7B) that generate a 

weaker learning expectancy.
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Figure  7 Delayed reinforcement Responses axe reinforced with probability 0.1 

(rich side) and 0.01 (lean side), respectively. (A) The proportion of responses 

on the rich side in a 0-s delay situation increases faster compaxed to the 

proportion of responses in a 1-s delay situation. (B) Reinforcement delay 

causes the formation of weaker long-term response-reinforcement associations. 

(C) Delay-of-reinforcement-gradient in which the percentage of maximum re­

sponse strength decreases with the reinforcement delay. Reinforcement prob­

abilities axe the same as above (0.1/0.01).
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111 these conditions the delayed-reinforcement response receives diminished sup­

port from the behavioral excitation unit, thus generating a lower level of respond­

ing. Figure 7C presents a delay-of-reinforcement-gradient form of the effect pre­

sented in panel A.

Preference Reversed and Delayed Reinforcement

Experimental da ta . In the previous subsection I analyzed how preference develops 

for the shorter delay of reinforcement when both reinforcement magnitude and 

probability are held constant across conditions. In an attempt to test the properties 

of the hyperbolic discount curve proposed to describe how the reinforcement loses 

its value per unit of delay time, Ainslie & Herrnstein (1981) analyzed the pattern 

of preference when both reinforcement delay and magnitude vary. They showed 

that in a two-key discrete-trial procedure with the larger reinforcement always 

presented 4 sec later than the smaller, as the delay between the access to the 

smaller reinforcement is varied from .01 to 12 sec, pigeons reverse preference from 

the small-early to the large-late reinforcement (Figure 8A).

Simulation results. I have simulated the discrete-trial procedure used by Ainslie 

&: Herrnstein, running one set of computer simulations for each pair of early-late 

reinforcement delays such that the ratio between late and early reinforcement mag­

nitudes is two. I explain the preference reversal effect as a result of the interplay 

between the different time scales used in the model. Intuitively, preference for each 

side is determined by the product between the response trace (A'/cr) and the size 

of the reinforcement (S r ) associated with each response. The response trace grad­

ually decreases with the delay between the response and the reinforcement. Since 

the decay of the response trace is a negatively accelerated function (cf. Equation

2), when the reinforcement delay is small the associations between the early-small 

reinforcement and the (high level) response trace are stronger than those between 

the late-large reinforcement and the (low level) response trace. However, if the 

reinforcement delay increases the absolute difference between response traces in
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the small-early vs. large-late situation diminishes, and therefore the associations 

between the early-small reinforcement and the response become weaker than those 

between the large-late reinforcement and the response, thus accounting for the 

shift in preference with the increase in reinforcement delay (Figure 8A-B).

Note that the model is able to explain delayed-reinforcement preference reversal 

without assuming the hyperbolic discount curve proposed for this effect (Ainslie, 

1975; Chung k  Herrnstein, 1967). I explain the effect as an emergent property of 

the interaction between processes that occur at different time scales.

Effect of Free Reinforcement

Experimental data. Contingency means that the strengthening effect of reinforce­

ment is a function of the degree of correlation with the reinforced behavior, not 

just an effect of contiguity. In addition to the effects explained in previous subsec­

tions, an important instance of contingency is the decrease in response rate with 

the delivery of free reinforcements. The effect of free reinforcement has been little 

addressed in formal operant theorizing (but see Staddon & Zhang, 1991). 

Simulation results. I have simulated three variable-ratio simple schedules, VR 60, 

VR 80 and VR 120; as soon as stable response rates were obtained free reinforcers 

are delivered on three different variable-time schedules (VT 10-s, VT 40-s, and 

VT 160-s) while the maintaining VR schedule was in effect. Figure 9 shows that 

because the free reinforcers degrade the response-reinforcement contingency the 

rate of responding decreases with respect to baseline across the three conditions. 

It can be also shown that, consistent with Cohen et al. (1993) findings, the de­

cline in the rate of responding is positively correlated with the probability of free 

reinforcement. There are greater reductions with VT 10-s schedules than with VT 

40-s or VT 160-s schedules.
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F igure  8 Preference reversal and delayed reinforcement. (A) The pattern of pref­

erence when both reinforcement delay and reinforcement magnitude vary. In 

two-key discrete-trial procedures, with the larger reinforcement always pre­

sented 4 sec later than the smaller, as the delay between the access to the 

smaller reinforcement is varied from .01 to 12 s, pigeons reverse preference 

from the small-early to the large-late reinforcement, [adapted from Ainslie k  

Herrnstein (1981)]. (B) Simulation results obtained in the same conditions as 

in the original experiment.
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F igure  9 Effect of free reinforcement. The percentage of response rate during a 

free-reinforcement test to rate on the immediately preceding baseline session 

(percentage of baseline). Data is obtained in three different conditions (VR 

60, VR 80, VR 1'20) during training. In the test phase free reinforcement is 

delivered, while the maintaining schedule is in effect, according to the follow­

ing schedules: VT 10-s, VT 40-s, or VT 160-s. The decline in response rate 

is positively correlated with the probability of free reinforcement.
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To explain the ffee-reinforcement effect, I consider that the explicitly reinforced 

response competes throughout training with responses representing the set of other 

behaviors from the animal’s innate repertoire (cf. Staddon & Simmelhag, 1971). 

I group and label these responses as o-response or ’’other” response (I ensure 

that throughout simulations the probability of the o-response does not fall behind 

a 0.03 threshold level). During the standard training conditions, the response- 

reinforcement contingency ensures that as the reinforcement accumulates the con­

tingent response increases in strength. However, if no response is emitted the trace 

of the contingent response decays until it reaches 0. If a reinforcement is offered 

in these conditions it becomes associated with, and strengthens, the o-response. 

As free reinforcers continue to accumulate, the expectancy of o-response - rein­

forcement associations increases and causes the strength of s-responses to grow 

at a rate controlled by the probability of free reinforcement. Because of response 

competition, the o-response inhibits further the contingent response that decreases 

in strength.

Development of Preference

In simple choice situations such as concurrent variable-ratio schedules (VR-VR) 

choice shifts towards the side with the higher reinforcement probability. Choice 

data obtained in both discrete-trial experiments, e.g., Davenport (1962), and free- 

operant experiments, e.g., Kacelnik et al. (1987), support the following general­

ization: the higher the probability (or magnitude) of reinforcement for the rich 

side the faster the convergence toward the rich alternative, a result that seems 

completely intuitive. How does the distribution of the two reinforcement proba­

bilities affect the rate of transition toward the ’’winning” alternative? Specifically, 

what is the effect of (a) The ratio between reinforcement probabilities (the two 

probabilities vary such that their ratio is held constant)? (b) The absolute dif­

ference between reinforcement probabilities (the two probabilities vary such that 

their absolute difference is held constant)?
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F igure 10 Development of preference when the reinforcement probability ratio is 

varied, but the absolute difference is constant. (A) Proportion of responses 

on the rich key as a function of blocks of 500 responses. Even though the 

difference between the two probabilities is .06 for each of the four probability 

pairs, the transition to preference for the higher probability of reinforcement 

develops faster with the larger ratio between the two reinforcement probabil­

ities [adapted from Mazur & Ratti (1991) - Figure 1]. (B) Simulation results 

obtained in conditions similar to the original experiment. Preference increases 

faster with the larger ratio between the two reinforcement probabilities, (c) 

Long-term memory for associations between responses to the rich key and the 

reinforcement. Even though lower probability ratios are equivalent to stronger 

associations, however preference is an increasing function of probability ratio.
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Effect of ratio between reinforcement probabilities

Experimental data. Mazur & Ratti (1991) suggested that the development of pref­

erence for one alternative depends on the discriminability of the two alternatives, 

showing that with concurrent VR-VR schedules the acquisition of preference oc­

curs more rapidly with larger ratios between the probabilities of reinforcement, 

even when their absolute difference is held constant. For instance, suppose that 

in one condition the two reinforcement probabilities are .16 and .10, and in an­

other condition the two probabilities are .07 and .01. Even though the difference 

between the two probabilities is .06 in both conditions (Figure 10A), the transi­

tion to preference for the higher probability of reinforcement is much faster in the 

.07/.01 condition (ratio 7) than in the .16/.10 condition (ratio 1.6).

Simulation results. I have simulated the transition sessions of the free-operant 

choice experiment described by Mazur &c Ratti (1991). Each response on one key 

(rich) was reinforced with a  probability pi, and each response to the other key 

(lean) was reinforced with a probability p2 <  Pi- By keeping p\ — p2 fixed (equal 

to 0.06), while varying P i/pi, the development of preference is compared across 

four groups. The pairs of reinforcement probabilities axe: 0.16/0.10, 0.13/0.07,

0.10/0.04, and 0.07/0.01. The fifth pair, 0.19/0.01 was presented to give subjects 

an easy discrimination that can be used for control purposes. Figure 10B shows 

simulation results that demonstrate that preference develops faster with the larger 

ratios between the two reinforcement probabilities. Figure 10C shows that, for 

the situations described in the current simulation, even though lower reinforce­

ment probability ratios are equivalent to higher response-reinforcement long-term 

memory associations, however preference is an increasing function of Pi/p2 -

This effect can be explained as a conjoint result of response competition and 

behavioral excitation. According to the theory, during acquisition the rate of in­

crease of X rsi (T ’ is the richer side) is influenced by two factors (cf. Equation 1). 

One is facilitatory, the term aoXEE(l — X rsi) which sustains acquisition, and one 

is suppressive, the term —oc4 X}lsX ES which determines the strength of competi­
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tion between the two responses (suppressive influences from behavioral inhibition 

are negligible during acquisition). It was shown earlier that behavioral excita­

tion (X q e ) is proportional to learning expectancy and that learning expectancy is 

proportional to the frequency of contingent reinforcement. Therefore, the higher 

the ratio between the two reinforcement probabilities (P1/P2) the higher the ratio 

between the corresponding X be  units { X \Ej  X~BE) which sustain the two com­

peting responses. Since behavioral excitation controls the rate of increase of the 

response, higher ratios between the X b e  units (corresponding to the rich and the 

lean sides) will cause higher ratios between the level of the corresponding X ^ s  units 

(X b s /X  BS). Notice that this dependency holds only in transition, not in the steady 

state of the X rs  units, as Equation 1, which describes Xus, is a saturating equa­

tion with respect to the term which contains X b e ■ According to the response rule, 

a singular response, X B, is emitted with probability p ( R i )  = X ^ / I X ^  +  X j^ ) .  

a function that varies monotonically with A' rs /X rs -  If the ratio P1/P2 increases, 

then X r s xIX r s 2 also increases, yielding a higher probability, pl7 for response X B.

i.e., more frequent responses on the rich side and less frequent responses on the 

lean side. Therefore, there will be less inhibition on A ^  by A ^ ,  resulting in 

a faster preference for the richer side (preference for alternative 1 is defined as

Effect o f absolute difference between reinforcement probabilities

Experimental data. Mazur (1992) showed that when the ratio between the two 

probabilities of reinforcement is held constant, preference develops according to 

the absolute difference between the two probabilities. For instance, suppose that 

in one condition the two reinforcement probabilities are .16 and .08, and in another 

condition the two probabilities are .08 and .04. Even though the ratio between the 

two probabilities is 2 in both conditions, the transition to preference for the higher 

probability of reinforcement is much faster in the .16/.08 condition (difference .08) 

than in the .08/.04 condition (difference .04). Mazur interprets these findings
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by assuming a Weber-law type of effect in the acquisition of preference, i.e., two 

stimuli (reinforcement probability) axe more easily discriminated (or processed) if 

they differ by a larger percentage or absolute difference.

Simulation results. I have simulated the transition sessions of the discrete-trial 

choice experiment described by Mazur (1992). Each response on one key (rich) 

was reinforced with a probability pi, and each response to the other key (lean) 

was reinforced with a probability p<i <  p\. Keeping pi/po fixed (equal to 2), 

while varying pi — po, allows the development of preference to be compared across 

four groups. The pairs of reinforcement probabilities are: 0.16/0.08, 0.12/0.06.

0.08/0.04, and 0.04/0.02. The fifth pair, 0.19/0.01 was presented to give subjects 

an easy discrimination that can be used for control purposes. Figure 11B illustrates 

simulation results showing that preference develops faster with the larger absolute 

difference between the two reinforcement probabilities. Figure 11C shows that 

lower absolute differences between reinforcement probabilities are equivalent to 

lower reinforcement expectancies.

As in the case of probability ratios, the absolute-difference effect can be ex­

plained as a conjoint result of response competition and behavioral excitation. 

Given that the learning expectancy varies proportionally to reinforcement proba­

bility, at equal ratios between reinforcement probabilities one should expect equal 

ratios between learning expectancies. However, if the absolute difference between 

reinforcement probabilities increases (at the same ratio), the probability of the rich 

side also increases. This leads to the formation of stronger response-reinforcement 

associations for the richer alternative, causing the level of X EE to increase in time 

to a higher level. This contributes to the facilitation of X ^5 which increases faster 

and sends more inhibition to X thus sustaining a higher rate of fixation. Mazur’s 

(1992) results can be explained by means of the excitatory effect of the absolute 

reinforcement probability for the rich alternative.
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Figure 11 Development of preference when the reinforcement-probability absolute 

difference is varied but the ratio is constant. (A) Proportion of responses on 

the rich key as a function of blocks of 100 responses. Even though the ra­

tio between the two probabilities is 2 for each of the four probability pairs, 

the transition to preference for the higher probability of reinforcement devel­

ops faster with the larger absolute difference between the two reinforcement 

probabilities [adapted from Mazur (1992) - Figure 2]. (B) Simulation results 

obtained in conditions similar to the original experiment. Preference increases 

faster with the larger absolute difference between the two reinforcement prob­

abilities. (c) Long-term memory for associations between responses to the rich 

key and the reinforcement. Lower absolute differences between reinforcement 

probabilities are equivalent to weaker associations with the reinforcement.
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Mazur’s experimental results are inconsistent with, most other models of acqui­

sition, for example, the linear-operator model (Bush k  Mosteller, 1955), the ki­

netic model (Myerson k  Miezin, 1980), melioration theory (Herrnstein k  Vaughan, 

1980), ratio invariance (Staddon, 1988), etc., although Grossberg (1972), in his 

analysis of punishment and avoidance, did derive a Weber law in the develop­

ment of the avoidance response. Other dynamic models such as the CE model or 

DMOD (Daly k  Daly, 1982), fail to generate correct predictions when applied to 

this phenomenon. The theory shows that the critical variables to explain Mazur's 

results are response competition and the facilitatory effect of learning expectancy 

(expressed via behavioral excitation).

M atching

Experimental data . Herrnstein (1961) proposed a general principle, known as the 

matching law, which states that in a concurrent VI-VI schedule the proportion of 

responses for one alternative should equal the proportion of reinforcement delivered 

by that alternative. Matching is not perfect: The most common deviation is under- 

matching (Baum, 1979; Davison k  McCarthy, 1988), in which response proportions 

are consistently less extreme than reinforcement proportions. Undermatching can 

be reduced experimentally by introducing a changeover delay (COD), which is a 

reinforcement-delay penalty for switching between alternatives (Herrnstein, 1961). 

Previous simulation results have shown that matching is overdetermined: almost 

any law-of-effect process (more reinforcement leads to more preference) will pro­

duce something like matching on concurrent variable-interval schedules (Hinson k  

Staddon, 1983), so it would be surprising if the model failed to predict match­

ing. More interesting would be prediction of systematic deviations from perfect 

matching.

Simulation results. I simulated a concurrent VI-VT schedule in which the percent­

age of reinforcements on one side was varied between 0 to 100%. I analyzed two 

situations, C O D = 0 and COD= 2 sec. Figure 12 presents experimental data in
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parallel with theoretical results. Percentages of responses and reinforcements for 

one alternative were calculated over the last 10 simulation sessions (1 session = 

60 reinforcements), after preference has stabilized. The typical finding is that un­

dermatching is obtained in the absence of COD. However, Figure 12 shows that 

undermatching is reduced if the COD is set to 2 sec, a value close to that used 

by Herrnstein (1961) to obtain perfect matching. The results of the simulation 

are compared with Herrnstein’s data (bird 055) in Figure 12, the match is almost 

point for point.

These results are mildly surprising because, like the cumulative-effects model 

(Davis et al., 1993), it shows that a nonlocal process can produce matching (most 

previous matching models are local, e.g., Herrnstein & Vaughan, 1980; Myerson 

<k Miezin, 1980; Homer & Staddon, 1987). However, unlike the cumulative-effects 

model which is insensitive to real time and therefore is unable to deal with the COD 

procedure, the present model does show that a 2-sec COD reduces undermatching. 

Nonetheless, because the theory has no way to represent learning of switching (i.e., 

use of a response as discriminative stimulus), it cannot show that large increases 

in COD almost abolish switching.

Kinetics o f matching

Experimental data. In an attempt to analyze the time course of matching, Mark 

and Gallistel (1994) used concurrent VI-VI schedules with brain-stimulation reward 

in rats to measure trial-to-trial changes in the relative rates and relative magnitudes 

of reward. The experimental conditions were repeated sessions of two trials each, 

the relative scheduled rate of reward reversing from 4:1 in favor of one lever to 4:1 

in favor of the other between the two trials. The transition to matching was traced 

cumulating the times each lever was depressed and the number of rewards received 

within successive temporal windows equal in width to the expected interreward 

interval of the leaner schedule.

The results (Figure 13A) support Dreyfus’ (1991) findings, i.e., window-to-
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window variations in the time-allocation ratio track the random unsignaled window- 

to-window variations in the experienced reward race, results independent of the 

time scale of the experiment. Moreover, the transition to matching is almost 

complete within the first time window of the post-transition trial. However, in a 

subsequent set of experiments, Mark & Gallistel (1995) replicated earlier results 

showing that if the animal experiences stable relative rates of reward for many 

sessions before the relative rate is reversed, the adjustment in time allocation ratio 

is slower and is less sensitive to the noise in the reinforcement schedule than if 

relative reward rates are held constant only briefly (Figure 13B). The conclusion 

of Mark & Gallistel’s studies is that the development of matching behavior de­

pends on past experience, with slower transition to matching being observed if the 

animal has experienced stable reward rates for extended sessions. (Note that the 

qualitative result here - faster preference changes when reward ratios change more 

frequently - is exactly the same as a familiar result in serial reversal learning that 

I discuss in a moment, namely faster reversal when contingencies change daily vs. 

every two or four days [Davis & Staddon, 1990]).

Simulation results. I have simulated Mark & Gallistel’s (1994; 1995) experiments 

using a concurrent VI 4-s VI 16-s schedule. The relative scheduled reward rate 

reverses from 4:1 in favor of one alternative to 4:1 in favor of the other in the 

middle of each session. During each part of the session I have calculated the ratio 

between the number of rewards received on each side and the ratio between the 

number of responses on each side within time windows approximating two expected 

interreward intervals on the leaner side. Successive reward and response ratios are 

plotted on a logarithmic scale as a function of session time.
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F ig u re  12 Matching on concurrent variable-interval (VI) schedules. Dashed line: 

theoretical matching law (the proportion of responses for one key should equal 

the proportion of reinforcement delivered by that alternative). Rectangles: 

Herrnstein data [taken from Herrnstein (1961)]. Thin line: simulation results 

show undermatching (response proportions are less extreme than reinforce­

ment proportions). Heavy line: Corrections of undermatching can be obtained 

by introducing a changeover delay (COD), which is a penalty for switching 

between alternatives. In the simulations I used a 2-s COD. Percentages of 

responses and reinforcements for each alternative are calculated for the last 

10 simulation sessions.
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F igure 13 Kinetics of matching. (A) Rats were exposed to concurrent VI-VI 

schedules with brain stimulation reward. The experimental conditions were 

repeated sessions of two trials each, the relative scheduled rate of reward re­

versing from 4:1 in favor of one lever to 4:1 in favor of the other between 

the two trials. The transition to matching was traced cumulating the times 

each lever was depressed and the number of rewards received within succes­

sive temporal windows equal in width to the expected interreward interval of 

the leaner schedule, [adapted from Mark Gallistel (1994) -  Figure 1A] (B) 

If rats experience stable relative rates of reward for many sessions before the 

relative rate is reversed, the adjustment in time allocation ratio is slower and 

is less sensitive to the noise in the reinforcement schedule compared to the 

situation in which relative rates of reward are held constant only for small 

durations, [adapted from Mark & Gallistel (1995) -  Figure 7] (C) Simulation 

results of Mark & Gallistel’s (1994) experiment in a concurrent VI 4-s VI 16-s 

procedure. The transition to matching is almost complete within the first time 

window of the post-transition trial. (D) Simulation results of Mark Sz Gallis- 

tel’s (1995) experiment in a concurrent VI 4-s VI 16-s procedure. Matching is 

slower if the animal has experienced stable reward rates for extended sessions.
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The results axe consistent with Maxk & Gallistel’s (1994) findings, i.e.. the 

response ratios match the reward ratios a few minutes into each session. Further­

more, response ratios show fluctuations that track the noise in the reward ratios. 

This result can be explained as an effect of the short-term time scales in the model 

that offer the substrate for rapid matching: if the time window in which reward and 

response ratios axe calculated is short, responses on each side reflect the effective 

obtained reward rates, and matching occurs as a normal consequence. However, if 

the change in the scheduled reward rate occurs after extended training (60 min in 

the simulation) the development of matching takes much longer, results which are 

consistent with Maxk & Gallistel’s (1995) findings. In this situation, the longer 

time scales in the model tend to preserve the consequences of the previous rein­

forcement conditions. Specifically, when the change in the scheduled reward rates 

occur, the long-term memory for response-reinforcement associations decays slowly 

in response to the new reinforcement conditions, overshadowing the effect of the 

rapid decline in the short-term memory for associations which becomes thus less 

effective.

Successive contrast effects

The term contrast effect refers to those situations in which exposure to one rein­

forcement condition affects performance under a succeeding condition. Contrast 

effects have been consistently demonstrated in both runway and discrete-trial free- 

operant studies with rats and pigeons: Crespi (1952), Nevin & Shettleworth (1966), 

Bemheim & Williams (1967), Franchina & Brown (1971).

Successive negative contrast effect

Experimental data. If subjects are switched from a CRF schedule (continuous re­

inforcement, i.e., every response reinforced) to a PRF schedule (partial reinforce­

ment, i.e., the response is reinforced with some probability), PRF response rate is 

depressed (and approaches asymptote more slowly) compared to a control group
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that received reinforcement with the same PRF probability throughout (successive 

negative contrast effect: Crespi, 1952; Black, 1968; Cox, 1975). Negative contrast 

is transient; the response rate gradually recovers from depression.

Simulation results. To test the basic effect, I simulate a discrete-trial procedure 

in which the model is exposed to 100 acquisition sessions, with 15 reinforcements 

per session. During each trial animals receive either a large (L ) or a small (5) 

reinforcement (ratio largersmall, 3 : 1 ) .  The control group (5 — 5) receives a small 

reinforcement for all the 100 sessions. The ’’shifted” group (L — 5) receives a 

large reinforcement for the first 18 sessions, and then was switched to the small 

reinforcement for the rest of the sessions. Figure 14A shows that after the shift 

occurs, the performance (response strength) gradually becomes higher in the con­

trol group. According to the theory, when the negative shift occurs the animal 

overpredicts the reinforcement. The difference in the time constants at which the 

short and long-term memory traces for associations decay, as an effect of reinforce­

ment diminution, contributes to a positive mismatch between the long and the 

short-term learning expectancy units (X le ~  X se > 0 ) that determines a positive 

behavioral inhibition (X b i) signal (Figure 14B) that reduces the response strength 

for the ’’shifted” group. Figure 14C shows that despite the discontinuity that fol­

lows session 18, the "shifted” group has a higher level of response-reinforcement 

associations than the control group. However, after the mismatch between short 

and long-term memory for associations diminishes, behavioral inhibition gradually 

decreases and releases the response strength unit from depression. The simulation 

results (Figure 14A) show gradual changes in response strength following the shift 

in reinforcement magnitude. This result is similar to many negative contrast stud­

ies (e.g., Meyer, 1951; Spence, 1956; Bower, 1961; Di Lollo &c Beez, 1966) reporting 

gradual rather than abrupt changes in performance. The gradual changes suggest 

that the development of the negative contrast effect is driven by learning processes 

(as hypothesized here), distinct from motivational variables.
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F igure  14 Successive negative contrast effect (A) Response strength is calculated 

in two different situations: (1) small reinforcement for all sessions as control 

condition (S-S); (2) large reinforcement (L) for the first 18 sessions followed 

by small (S) reinforcement for the rest of sessions as ’’shifted” condition (L-S). 

Even though the response is much stronger for the L-S segment (compared 

to the S-S case), once the reinforcement magnitude diminishes the response 

strength of the ’’shifted” group develops at a lower rate than the response 

strength of the control group. (B) Behavioral inhibition detects the change 

in reinforcement magnitude and inhibits the response of the ’’shifted” group, 

(c) Long-term memory for response-reinforcement associations: the ’’shifted” 

group has a higher reinforcement expectancy than the control group, despite 

the abrupt change that follows trial 18. (D) Magnitude of effect: negative 

contrast effect is an increasing function of the abruptness of shift (difference 

between the large and the small reinforcement). (E) Magnitude of effect: 

negative contrast effect is an increasing function of the number of preshift 

trials.
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The present theory gives an accurate picture of the effects on negative con­

trast of abruptness of shift, number of preshift trials, and quality and delay of 

reinforcement. It is shown here the influence of the difference between large and 

small reinforcement (abruptness of shift) and the influence of the number of trials 

preceding the shift. Figure 14D shows that as the abruptness of shift is varied 

between 0.9 and 0.5 the depression effect reduces in strength, a result consistent 

with Mikulka et al’s (1967) findings, who showed that negative contrast effect is 

reduced if the reinforcement discontinuity is made less abrupt.

Figure 14E shows that the negative contrast effect is an increasing function of 

the number of preshift trials (Vogel et al., 1966). This result can be explained by 

the fact that extended preshift acquisition trials contribute to a larger reinforce­

ment expectancy that, once the reinforcement magnitude is decreased, determines 

a larger behavioral inhibition signal that reduces the response strength.

Successive positive contrast effect

Experimental data. If subjects reinforced on a PRF schedule are switched to CRF 

they usually perform at a higher level (response rate) than a control group ex­

posed only to CRF (elation effect or positive contrast effect: Benefield et al., 1974: 

Maxwell et al., 1976). The positive contrast effect is transient: the response rate 

gradually recovers from elation.

Simulation results. I simulate a discrete-trial procedure in which the model is 

exposed to 100 acquisition sessions, with 15 reinforcements per session. During 

each trial animals receive either a large (L ) or a small (5) reinforcement (ratio 

large:small = 3 : 1 ) .  The control group (L  — L) receives a large reinforcement for 

all the 100 sessions. The ’’shifted” group (S  — L) receives a small reinforcement 

for the first 20 sessions, and then is switched to the large reinforcement for the 

rest of the sessions. Figure 15A shows that after the shift occurs performance 

(response strength) gradually becomes lower in the control group. This result is 

explained as a direct consequence of reinforcement underprediction, i.e., the sudden
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increase in reinforcement magnitude causes the short-term learning expectancy to 

increase faster than the long-term learning expectancy, causing further behavioral 

excitation (X'b e ) to increase above the control level (Figure 15B) despite the fact 

that behavioral excitation starts from a lower level in the ” shifted” condition. It 

is noteworthy that despite increased response strength in the ’’shifted” condition, 

stronger response-reinforcement associations are formed in the control condition 

(Figure 15C), where the large reinforcement is in effect since the first acquisition 

trial. This result shows once again that the properties of operant response are a 

function of changes in the level of response-reinforcement associations (reflected 

in the dynamics of behavioral excitation and behavioral inhibition) rather than a 

function of the absolute level of these associations. Notice that the strength of the 

operant response cannot be predicted solely from the asymptotic level of the short 

and long-term associations.

It is easy to see from simple inspection (Figures 14A and 15A) that for the 

same magnitude of the shift in reinforcement conditions the simulations show an 

asymmetry between negative and positive contrast effects. The magnitude of suc­

cessive negative contrast effect is larger than the magnitude of positive contrast. 

However, although at the first sight this result might seem implausible, the avail­

able evidence supports these findings. Despite the fact that positive contrast was 

long thought to be symmetric and as readily obtainable as negative contrast, in­

vestigations that followed Crespi’s (1952) initial report in successive experiments 

(e.g., Spence, 1956; Sgro &c Weinstock, 1963; Capaldi & Lynch, 1967) either failed 

to find positive contrast or found only a relatively small effect that points to the 

conclusion that there is no positive contrast effect equal and opposite to the neg­

ative contrast effect generally observed when animals are shifted from a large to a 

small reinforcement.

The theory correctly characterizes the determinants of positive contrast effects,

i.e., abruptness of shift, reinforcement delay and frequency.
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F igure  15 Successive positive contrast effect. (A) The response strength is cal­

culated in two different situations: (1) large reinforcement for all sessions as 

control condition (L-L); (2) small reinforcement (S) for the first 20 sessions 

followed by large (L) reinforcement for the rest of sessions as ’’shifted7' con­

dition (S-L). Even though the response is much stronger for the L-L segment 

(compared to the S-L case), once the small reinforcement is shifted to a large 

one the response strength of the ’’shifted” group develops at a higher rate 

than the response strength of the control group. (B) Behavioral excitation 

detects the change in reinforcement magnitude and increases the amount of 

facilitation to the response of the ’’shifted” group, (c) Long-term memory for 

response-reinforcement associations: the ’’shifted” group has a lower reinforce­

ment expectancy than the control group, despite the fact that the response 

strength develops to higher levels. (D) Magnitude of effect: positive contrast 

effect is an increasing function of the abruptness of shift (difference between 

the large and the small reinforcement).
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I present here the influence of the absolute difference between the small preshift 

reinforcement and the large postshift reinforcement (abruptness of shift). Figure 

15D shows that as the shift in reinforcement magnitude is varied between 0.9 and 

0.5 the positive contrast effect declines, a result consistent with the findings of 

Weisman (1969) who showed that positive contrast is enhanced by larger shifts.

Theoretical analysis of successive contrast effects shows that both positive and 

negative contrast should be sensitive to changes in reinforcement contingency, not 

just to the simple accumulation of reinforcement. The critical theoretical variables 

to explain successive contrast are behavioral excitation (a measure of reinforcement 

underprediction) and behavioral inhibition (a measure of reinforcement overpre­

diction).

Behavioral contrast

Experimental data. Reynolds (1961) showed that in multiple VI-VI schedules in 

which each variable-interval component is signaled by a different stimulus, the 

rate of responding is a function of the relative, rather them absolute, rate of re­

inforcement. In several experiments, the stimulus on the key was red or green 

and components of the multiple VI-VT schedule alternated every 100 s. When the 

schedule in one stimulus is changed from VI to extinction while the reinforcement 

conditions in the other VI schedule are unchanged, pigeons show a substantial 

and reliable increase in response rate in the unchanged component (positive be­

havioral contrast effect - Figure 16A). Reynolds also reported a negative contrast 

effect when reinforcement rate is increased rather than decreased. For instance, 

when the schedule in one stimulus is changed from VI 100-s, say, to VI 30-s while 

the other schedule is unchanged the result is a  decrease in response rate in the 

unchanged VI 100 component.

Simulation results. I simulate a multiple V I100 V I 100 procedure in which different 

stimuli signal each component of the multiple schedule, exposing the model to 16 

sessions (60 reinforcements per session) in which components are alternated.
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F igu re  16 Behavioral contrast effect. (A) Positive behavioral contrast effect. Pi­

geons are exposed to a multiple VI schedule (each component signaled by red- 

green stimuli). After the shift (VI to extinction in one schedule) the response 

rate in the extinction component (green light) drops to almost zero whereas 

the response rate in the unchanged component (red light) increases [taken 

from Reynolds (1961)]. (B) Positive behavioral contrast effect. Simulation 

results obtained using a multiple VT 100-s VI 100-s schedule. (C) Negative 

behavioral contrast effect. Simulation results obtained using a multiple VI 

100-s VI 100-s schedule. After the rate of reinforcement in one component 

of the multiple schedule is improved to VI 30 (VT++), the rate of response 

in the unchanged VT 100 component (VI) is degraded. (D) Effect of non­

contingent reinforcement. When a multiple VI-VI schedule is changed to a 

multiple VI-VT schedule, the reduction in response rate obtained in the sec­

ond component (VT) is not accompanied by an increase in response rate in 

the first component. (E) Effect of component duration. The degree of sched­

ule interaction is greater the shorter the components of the multiple schedule. 

Simulations were run to measure the magnitude of positive contrast (V I100 - 

V I100 was changed to V I 100 - extinction) and negative contrast (V I100 - VI 

100 was changed to VI 30 - VI 100) while varying the percentage-maximum 

component duration (10,000  time units).
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For the first and last 5 sessions, both components are the same. For the middle 

6 sessions, one component is shifted to extinction. Figure 16B illustrates the sim­

ulation results. This figure shows that the response rates in the two components 

before and after the shift are roughly the same. However, after the shift the re­

sponse rate in the extinction component (green light) drops to almost zero whereas 

the response rate in the unchanged component (red light) increases substantially. 

(It is shown a smaller contrast effect than Reynolds, because the choice of param­

eter values was a compromise designed to provide a reasonable quantitative fit to 

a maximum number of operant conditioning phenomena).

The theory explains behavioral contrast as a result of the interplay between be­

havioral inhibition and response competition. When extinction occurs, the output 

of the behavioral inhibition unit associated to the green stimulus increases and re­

duces the corresponding response-strength unit. In these conditions, the alternate 

response is disinhibited from the mutual interresponse inhibition (response compe­

tition) and increases in strength. After extinction ceases the behavioral inhibition 

unit of the ’’green” response decays to zero while the V I100 schedule ensures that 

the ’’green” response gradually recovers to the preshift level, inhibiting the ’’red" 

response which returns to the previous strength level.

Figure 16C illustrates the simulation results in the negative behavioral contrast 

effect. This figure shows that after rate of reinforcement in one component (green 

light) of the multiple schedule is improved to VI 30 (labeled VT++ in Figure 16C) 

the rate of response in the unchanged V I100 component (red light) declines. When 

the VI 30 schedule is shifted back to VI 100 (after 6 sessions) rate of response in 

both components returns to the preshift level. The theory explains the negative 

behavioral contrast effect (Figure 16C) as a result of the interplay between be­

havioral excitation and response competition. After the shift in reinforcement rate 

occurs, the output of the behavioral excitation unit associated with the green stim­

ulus increases determining the response strength to grow above the preshift level. 

In these conditions, the alternate ’’red” response is inhibited at a higher rate than
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before the shift, and therefore it decreases in strength. After the VI 30 schedule 

is replaced with the VI 100 schedule the behavioral excitation unit of the ’’green" 

response gradually decreases to the preshift level diminishing the strength of inhi­

bition to the ’’red” response that gradually returns to the previous strength level 

(Figure 16C).

Figure 16D illustrates the fact that the reduction in response rate in one com­

ponent is not the critical variable that determines behavioral contrast. Halliday L  

Boakes (1971) showed that when a multiple VI-VI schedule is changed to a multiple 

Vl-variable-time (VT: response-independent reinforcers spaced like the "VI sched­

ule, or free VI), the reduction in response rate that occurs in the VT component 

(because food deliveries are no longer response-contingent) is not accompanied by 

an increase in response rate in the first component: i.e., no positive contrast. To 

simulate Halliday Boakes’ experiment a multiple VI 100 - VI 100 schedule is 

applied for five sessions (60 reinforcements per session), followed by a VI 100 - 

VT 100 schedule for the rest of the sessions. Figure 16D shows that although 

the rate of responding decreases during the VT schedule, no contrast occurs in 

the unchanged VI with which the VT is alternated. This happens in the model 

because free reinforcement delivery somewhat strengthens the o-response (which 

designate the set of ’’other” responses) which inhibits the previously contingent 

response. Furthermore, response competition ensures that the o-response also in­

hibits the contingent response in first VI 100 component, which prevents positive 

contrast. The VI-VT sequence is different from the Vl-extinction sequence that 

yields positive contrast. During extinction there is no reinforcement; hence, the 

o-response cannot increase in strength and inhibit the contingent response. Be­

cause of this weak response competition, the contingent response is disinhibited 

and shows positive contrast in the VI-EXT case but not in the VI-VT case.

One of the most important determinants of behavioral contrast is component 

duration: the degree of schedule interaction is greater the shorter the components 

of the multiple schedule (Shimp &: Wheatley, 1971; Ettinger & Staddon, 1982:
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etc.)- As shown in Figure 16E, this effect is true for both positive and negative 

contrast. Computer simulations were run to measure the magnitude of positive 

contrast (VI 100 - VI 100 was changed to VI 100 - extinction) and negative con­

trast (V I100 - VI 100 was changed to VI 30 - V I100) while varying the percentage 

maximum component duration from 50% to 100%. I found that the deviation from 

the baseline response rates was greatest at short component durations, and qual­

itatively the effect of component duration is symmetric for positive and negative 

contrast (although the magnitudes are different). This result is explained by the 

fact that short component durations determine the increase in response strength 

in the unchanged component that further increases the strength of response com­

petition. If response competition is stronger the extinguished response is weaker 

determining a higher level of disinhibition for the response in the VI component 

that shows positive contrast. Negative contrast is explained in the same way.

The explanation for behavioral contrast supports the view that rate of reinforce­

ment in the adjacent components determines the current response rate (Herrnstein. 

1970: Williams, 1983). Consistent with Hinson &: Staddon’s (1978) views that use 

behavioral competition as a mechanism for schedule interaction, I found that re­

sponse competition is critical.

Partial reinforcem ent extinction effect (PREE)

The PREE has two main aspects: (a) Subjects trained to respond to infrequent 

reinforcement stabilize at a performance value (e.g., rate of responding) generally 

lower than subjects trained with more frequent reinforcement, (b) When rein­

forcement is discontinued (extinction) partially reinforced subjects persist longer 

in responding than subjects that have been reinforced more frequently, even though 

they begin extinction responding at a lower rate. The magnitude of the PREE is 

affected by numerous factors, such as reinforcement probability, reinforcement de­

lay, pattern of reinforcement, reinforcement size, intertrial interval, and length of 

training. The model correctly predicts how the magnitude of the PREE is affected
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by all of these factors, except reinforcement patterning, which requires additional 

assumptions. In the present study I show the effects of reinforcement probability 

and length of training.

Effect of reinforcement probability

Experimental data. Probability of reinforcement during acquisition is one of the 

most important determinants of the PREE (Weinstock, 1958; Bacon, 1962: Kacel- 

nik et al., 1987). For instance, in Kacelnik et al.’s experiment starlings chose 

between two ” foraging patches" in which food was delivered according to either 

rich or lean probabilistic schedules. There were two comparison groups: in both the 

lean schedule was 0.08; one group was reinforced with probability 0.25 (rich sched­

ule) and the other one with probability 0.75 (rich schedule). The main conclusions 

are (Figure 17A): (a) Eventually the rich patch is always preferred close to 100%. 

but (b) the preference for probability .25 develops more slowly that the preference 

for probability .75; (c) after the suppression of reinforcement, responses reinforced 

with probability .25 are more resistant to extinction than responses reinforced with 

probability .75.

Simulation results. I have simulated a concurrent probabilistic schedule, similar 

to the foraging situation described by Kacelnik et al. (1987). The probability of 

the lean side is held at a fixed level (0.08), whereas the probability of the rich side 

is varied (0.75, 0.33, and 0.25). As shown in Figure 17B, the rate of acquisition is 

faster when the reinforcement probability on the rich side increases. After 1,000 

responses recorded on both sides during acquisition, the reinforcement is extin­

guished. The proportion of responses on the rich side is calculated for each block 

of 20 responses throughout the simulation. According to the simulation in Fig­

ure 17B, responses reinforced with probability .25 are more resistant to extinction 

than responses reinforced with probability .33 that are more resistant to extinction 

than responses reinforced with probability .75, even though during acquisition the 

proportion of responses on the rich side is directly related to reinforcement prob­
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ability.

The fact that the PREE is stronger when the reinforcement is presented less 

frequently during acquisition can be explained in the following way: the richer 

the acquisition schedule the higher the level at which both short and long-term 

memory traces for associations (wsxi and wc\r) increase. When extinction begins, 

both wsxi and Wlm decay, but at different rates: ws\r decays faster than w m .  see 

Figure 17 (panels D-E) and Equations 4, 5. The dynamics of wsm and w m  drive 

the increase of the behavioral inhibition unit (X b i) via the mismatch between the 

long and short-term learning expectancy units (ATe — X s E). X bi increases during 

extinction as the difference X'ce — X se becomes greater than 0. Figure 17C shows 

that the level of the behavioral inhibition unit during extinction is proportional to 

the reinforcement probability during training. Since the rate at which the response 

strength is suppressed is controlled by the level of the behavioral inhibition unit, 

there will be more resistance to extinction with more intermittent schedules (Figure 

17B).

In short, the richer the PRF schedule the higher the learning expectancy dur­

ing acquisition, and thus the higher the level of inhibition (due to X b i) that X Es 

receives during extinction. Therefore, more intermittency during training deter­

mines more resistance to extinction when the frequency of reinforcement alone is 

varied.

There axe very few theories that explain the PREE; one of the most successful 

is Daly &c Daly’s (1982) DMOD model, mainly developed to explain classical con­

ditioning effects, incorporating Rescorla & Wagner’s (1972) ideas and the major 

assumptions of frustration theory (Amsel, 1962). DMOD accounts for trial-by- 

trial changes and asymptotic values in discrete-trial PREE, but cannot account 

for other aspects of resistance to extinction presented in the following subsections. 

Unfortunately, most theories of extinction in operant conditioning axe verbal, and 

the very few existing dynamic models have serious difficulties in dealing with the 

PREE.
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F igu re  17 Partial reinforcement extinction effect - influence of reinforcement prob­

ability. (A) Experimental data [taken from Kacelnik et al. (1987)] in which 

starlings chose between two ” foraging patches” in which food was delivered 

according to either a rich or a lean probabilistic schedule. The lean schedule 

was 0.08: one group was reinforced with probability 0.25 (rich schedule) and 

the other one with probability 0.75 (rich schedule). Two aspects are impor­

tant: (i) Responses reinforced with probability .25 are preferred less rapidly 

than responses reinforced with probability .75; (ii) During the absence of re­

inforcement responses reinforced with probability .25 are more resistant to 

extinction than responses reinforced with probability .75. (B) Simulation re­

sults obtained in conditions similar to the original experiment. The acquisition 

is slower with the decrease in the absolute value of reinforcement probability. 

Less resistance to extinction with the richer schedule of reinforcement dur­

ing acquisition, (c) Behavioral inhibition. During extinction, the long-term 

learning expectancy decreases slower than the short-term learning expectancy 

causing the increase of behavioral inhibition to a level proportional to the re­

inforcement expectancy. (D) Long-term memory for associations. During 

acquisition wlm  increases to a level proportional to the actual reinforcement 

probability. The rate of increase is slower and the curve is smoother compared 

to wsxr- (E) Short-term memory for associations. During acquisition wsm 

increases to a level proportional to the actual reinforcement probability. After 

1,000 responses, the reinforcement is extinguished and wsm decays at a high 

rate.
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For instance, the cumulative-effects model (Davis et al., 1993) is able to obtain 

PREE only in special conditions. Staddon (1993), in a discussion of rate-sensitive 

habituation, has suggested that PREE and successive negative contrast effects both 

reflect a multiple-time-scale process, but provided no comprehensive account. The 

analysis shows that the resistance to extinction effect is intrinsic to the model, 

because of the multiple time scales that underlie response-reinforcement associa­

tions. PREE is explained in a way which is not too different from the generalization 

hypothesis (which is, admittedly, verbal and leaves ’’generalization” pretty much 

undefined). However, the problem with the generalization hypothesis, in addition 

to the fact that it is verbal, is that it does not explain the ’’reversed PREE” result 

(discussed in a subsequent section).

Effect o f length of training on resistance to extinction

Experimental data. Nevin (1988) has reported that the slope of the extinction 

curve is flatter after continuous reinforcement than after intermittent reinforce­

ment, suggesting greater rather than less resistance to extinction. This result, 

obtained in free-operant situations, seems to contradict the classic PREE, i.e.. 

that resistance to extinction is inversely related to rate of reinforcement. But 

what Nevin actually shows is that it is only when subjects are given extended 

training that extinction after PRF is faster than after CRF. Apparently the PREE 

depends on length of training (number of reinforcements), a variable that is often 

neglected in secondary accounts of the phenomenon.

Simulation results. The theory can accommodate both the PREE and the re­

versed PREE by utilizing the historical information represented by the consolida­

tion long-term memory variable. If training is not extensive, the effect of consoli­

dation long-term memory is negligible, and the amount of resistance to extinction 

is controlled by behavioral inhibition that increases proportional to the strength 

of response-reinforcement associations that axe formed during acquisition.
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F igure  18 Partial reinforcement extinction effect - influence of length of training. 

(A) Resistance to extinction as a function of length of training (number of 

reinforcements). The classic PREE (resistance to extinction is a negative 

function of the rate of reinforcement) is obtained when the reinforcement 

training is not extensive (e.g., 500 reinforcements). With extended training 

(e.g., 3,000 reinforcements) the PREE reverses. (B) Consolidation long-term 

memory is an increasing function of reinforcement probability and number of 

reinforcements.
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As more response-produced reinforcements accumulate during extended train­

ing, wclm increases, gradually masking the inhibitory effect produced by X bi 

during extinction. The level at which wclm increases is strongly dependent on the 

effective reinforcement probability, so that the consolidation long-term memory 

facilitates the response more strongly as the rate of reward approaches CRF, thus 

producing more resistance to extinction in the CRF than the PRF group. Figure 

18 shows simulation of an acquisition-extinction situation in which the length of 

training was varied between two groups, one receiving a CRF schedule, and the 

other receiving a VR 3 schedule. Two distinct situations are analyzed: extinction 

after 500 reinforcements and extinction after 3000 reinforcements. Figure ISA 

shows that as the number of reinforcements increases, the difference in resistance 

to extinction between continuously and intermittently reinforced responding also 

increases, replicating Nevin’s (1988) reverse-PREE finding. Figure 18B shows the 

cause of this effect: the increase in consolidation long-term memory follows the 

increase in the length of training.

I am not aware of any other model which can accommodate both the PREE 

and the reversed PREE. The fact that the theory incorporates history-sensitive 

variables which encode the response-reinforcement association strength throughout 

training is essential. The hypothesis is that the operant response is the result of two 

competing forces: one is suppressive (behavioral inhibition) and tends to reduce 

the response strength during nonreinforcement, and the other one is facilitatory 

(consolidation long-term memory) and tends to counterbalance the suppressive 

effects by exciting the response strength unit, at a much slower time scale, as a 

result of previous reinforcement.

Overtraining Reversal Effect (ORE)

Experimental data. The ORE is the fact that overtrained subjects often learn the 

reverse discrimination faster than control subjects. For instance, if one group is 

reversed immediately, one after 100 trials of overtraining, and one after 200 trials
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of overtraining, the speed of reversal is proportional to the amount of overtraining 

(Reid, 1953; Hooper, 1967). Mackintosh (1969) reported a significant ORE in 

a n i m a l s  given a large reward, and a much smaller effect in animals given a small 

reward. Reid (1953) and Capaldi k  Stevenson (1957) showed that reversal was 

facilitated by a moderate number of trials beyond a certain criterion, and was 

markedly facilitated by more extended overtraining. However, these latest results 

are inconsistent with Sperling (1970), who used a criterion of learning different from 

Reid and Capaldi k  Stevenson, a fact which made Mackintosh (1974) "forcibly 

impressed by the inconsistency of the effect and its reluctance to submit to any 

simple analysis” (p. 603). Although the necessary and sufficient conditions for the 

ORE are still obscure, there are some regularities: (a) ORE is stronger if large 

reward is used; (b) ORE magnitude increases with the amount of overtraining.

Simulation results. ORE is hard to explain by theories that assume that more 

training is equivalent to more strength of stimulus-response association. I explain 

ORE qualitatively, mainly because of the lack of detailed performance information 

on the effect (see Mackintosh, 1974, for a review). Computer simulations are 

presented in a discrete-trial choice situation in which the reward is given after 

each correct response on one of two alternatives. There are three groups: the 

control group is reversed after 200 trials, and the other two groups are reversed 

after 300 and 400 trials, respectively. Figure 19A shows that speed of reversal 

is highest in the group reversed after 200 overtraining trials, and it is minimum 

in the control group. The theory attributes the faster reversal to the right, say, 

with extended training to the left to the fact that extended training strengthens 

short and long-term memories for response-reinforcement associations which then 

determine an increased level of learning expectancy. Therefore, when the left 

response is in extinction, since behavioral inhibition increases at a rate controlled 

by the long-term learning expectancy, the left response in the overtrained group 

is suppressed at a higher rate compared to the control group (which received less 

reinforcers during acquisition).
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Figure  19 Overtraining reversal effect. (A) Simulations are presented in a discrete- 

trial choice situation in which the reward is given after each correct response 

on one of two alternatives. There are three groups: the control group is re­

versed after 400 trials, and the other two groups are reversed after 500 and 

600 trials, respectively. The speed of reversal is highest in the group reversed 

after 200 overtraining trials, and it is minimum in the control group. (B) 

Behavioral inhibition increases proportionally to the amount of overtraining.
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Thus, the right response is released faster from interresponse inhibition (faster 

reversal to the right). Figure 19B shows that behavioral inhibition increases at a 

rate controlled by the amount of overtraining.

The theory also predicts that the ORE will be stronger with larger reinforce­

ments because bigger reward means higher learning expectancies which means a 

stronger behavioral inhibition signal during extinction, and therefore faster re­

versals. In fact, no effect is obtained if the reward magnitude was too small, in 

agreement with a number of findings (e.g., Hooper, 1967; Mackintosh, 1969). The 

theory also predicts that the magnitude of the ORE is not monotonically related 

to the number of overtraining trials. That is, because of the nonlinearities in the 

model, I expect that control animals trained to a certain criterion reverse only 

slightly more slowly than animals given an additional of N  trials before reversal, 

but the control animals should reverse much more slowly than animals given 2N  

trials before reversals. These predictions are actually consistent with the findings 

of Reid (1953) and Capaldi Stevenson (1957). I am not aware of any quantita­

tive model which is able to generate ORE, although the cumulative-effects model 

(Davis et al., 1993) is able to produce it in some special conditions.

Spontaneous recovery

Changes in performance may occur over an interval of time when the subject is not 

exposed to reinforcement contingency, and even when the subject is not exposed 

to the experimental situation at all (inter-session time). One interesting instance 

of such ’’spontaneous” change is spontaneous recovery (SR) after extinction when 

after some interval since the termination of the prior extinction the subject’s initial 

pattern of response increases as a function of the inter-session time. I will deal with 

discrete-trial single-response recovery studies first and ffee-operant choice later.
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Spontaneous recovery in discrete-trial single-response situations

Experimental data. The quantitative estimate of spontaneous recovery- is the mean 

recovery ratio, defined as proportion of responding relative to the total amount of 

responding during acquisition. Spontaneous recovery can be described by two 

distinct phases: (a) within hours following extinction recovery reaches a maximum 

estimated at roughly 40% of the initially acquired response pattern, (b) after 

the recovery maximum is reached, the amount of recovery dissipates slowly in 

time such that responding can be observed for many days following the end of 

extinction (Mackintosh, 1974; Robbins, 1990). Figure 20A illustrates only the first 

stage of SR in which the ’’spontaneous” responses reach a maximum after roughly 

3 hours since the offset of extinction.

Simulation results. To test the operation of the theory for SR I have simulated 

an acquisition session of 80 min where responses are paid off with probability 0.1 

(VR 10 schedule), followed then by extinction. Figure 20B shows the amount of 

recovery as a function of the postextinction interval. Each point on the curve 

represents the proportion of responses in blocks of 30 min postextinction time 

units. Consistent with experimental data, two phases can be distinguished: after 

the response becomes fully extinguished it recovers within an interval (estimated 

roughly as 120 min) to about 55% of the initial level of responding, followed by 

a relatively slower decay that can last for many hours. The explanation for the 

dynamics of recovery is the following: in the absence of concurrent alternatives, 

the response is influenced by two types of activation (cf. Equation 10): one facili- 

tatory, (uq +  wclm) ^ b e ( 1 _  X r s), expressing the influence of long-term learning 

expectancy (I do consider the effect of consolidation long-term memory), and one 

suppressive, —olzX b iX r s , expressing the inhibitory influence exerted as a conse­

quence of nonreinforcement. The superposition of these two effects generates the 

profile depicted in Figure 20A.
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F igure  20 Spontaneous recovery in discrete-trial single-response situations. (A) 

Number of responses as a function of postextinction interval [adapted from 

Mackintosh (1974)]. (B) Recovery ratio (ratio between the postextinction 

response strength and the baseline) as a function of postextinction time. Two 

phases can be distinguished: after the response becomes fully extinguished 

it recovers within an interval (estimated roughly as 150 min) to about 50% 

of the initial level of responding, followed by a relatively slower decay that 

can last for many hours, (c) Behavioral inhibition decays with the time since 

extinction, gradually releasing the response strength from inhibition. (D) 

Consolidation long-term memory (xvclm) slowly increases during acquisition. 

After extinction begins wqlm decays slowly.
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During extinction all the memory traces for associations decrease. The decay 

process happens at different rates, depending on each memory trace, i.e., wsm 

decays fast, u/£m decays slower, and w cim  decays even slower. It was previously 

shown that due to the decay of the memory units the behavioral inhibition unit 

increases to a maximum during extinction (until the mismatch between the long 

and short-term learning expectancy becomes 0 ) and then decays spontaneously. 

Figure 20C shows that behavioral inhibition decays with the time since extinction 

and consequently inhibits the response strength unit at lower levels. At the same 

time, the behavioral excitation unit facilitates the response strength unit. The 

level of facilitation is controlled by the connection strength wL +  w c lu - where 

is fixed and wqlm is variable.

Immediately after extinction, the activity of the behavioral inhibition unit is 

more effective than the facilitatory effect induced by behavioral excitation (activity 

modulated by the slowly varying consolidation long-term memory). As the postex- 

tinction time goes on and behavioral inhibition decays faster than the consolidation 

long-term memory (Figures 20C-D), the response strength is slowly released from 

inhibition and, due to the facilitation from behavioral excitation, it increases to a 

maximum. After behavioral inhibition becomes 0, the response strength decreases 

slowly (the effect of recovery can last for days), as it relies only on the slowly de­

caying consolidation long-term memory, thus explaining the second portion (after 

the recovery ratio reaches a maximum) of the curve depicted in Figure 20B.

The role of discriminative stimulus is to trigger the operant behavior after a 

prolonged absence of reinforced training (during spontaneous recovery). In these 

conditions, after all the memory traces decay to zero, the consolidation long-term 

memory is the only variable which encodes information about the history of re­

inforcement. When the animal is reintroduced into the experimental box the dis­

criminative stimulus switches from 0 to 1 and triggers a burst of responding (in 

the case of a nonzero w c l m )- The responses thus generated read-out the consoli­

dation long-term memory and increase the response strength at a rate controlled
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by wclm (the higher wclm the higher the recovery rate). Because these ’’recov­

ery” responses are generated during extinction (when X le > X s e )? the behavioral 

inhibition unit is able to become active and to suppress the pattern of responding.

Spontaneous Recovery in Choice

Experimental data. By comparison with discrete-trial procedures, there has been 

little research on spontaneous recovery in free-operant studies. Recently, Mazur 

(1995) has performed a between-session spontaneous recovery study in which he 

observed that response proportions at the beginning of a new session were not the 

same as those at the end of the previous session. There was a tendency to revert 

toward response proportions of earlier sessions. Specifically, in a choice experiment 

in which reinforcement is assigned by a single VT 30-s, during a pretransition 

session the probability of assigning a reinforcement to the left key was .10. .25. 

.40, .60, .75, or .90. The pretransition session was followed by one transition 

session in which the same probability was in effect for the first 6 min, and then the 

probabilities for the two keys switched for the rest of the transition session and for 

four posttransition sessions. Mazur reports that at the start of each posttransition 

session the proportion of responses to the rich key was lower than at the end of the 

preceding session, this spontaneous recovery being largest in the first posttransition 

session and then becoming progressively smaller in subsequent sessions (Figure 

21A).

Simulation results. Figure 21B illustrates the simulation results. In the interval 

between the end of the transition session and the beginning of the first posttransi­

tion session both short and long-term expectancies decay to their rest level, such 

tha t when the posttransition session begins the response to the lean key relies only 

on the slowly decaying consolidation long-term memory (which encodes the past 

experience, before the switch in the reinforcement probabilities). Therefore, there 

is a recovery of the ’’lean” response toward the level before the switch.
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F igure  21 Spontaneous recovery in choice. (A) Reinforcement is assigned by a 

single VI 30-s, during a pretransition session the probability of assigning a 

reinforcement to the left key was .10, .25, and .40. The pretransition session 

is followed by one transition session in which the same probability was in 

effect for the first 6 min, and then the probabilities for the two keys switched 

for the rest of the transition session and for four posttransition sessions. At 

the start of each posttransition session the proportion of responses to the 

rich key was lower than at the end of the preceding session, this spontaneous 

recover}’- being largest in the first posttransition session and then becoming 

progressively smaller in subsequent sessions [adapted from Mazur (1995)]. (B) 

Simulation results obtained in conditions similar to the original experiment.
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The recovery response for the ’’lean” key, stronger than the response for the 

"lean” key at the end of the transition session, gives a response proportion (for the 

rich key) which is lower than at the end of the transition session. However, since the 

consolidation long-term memory decays in the intervals between the posttransition 

sessions, the ’’recovery” response is weaker with each posttransition session and 

thus the SR magnitude diminishes.

Mazur explains spontaneous recovery in his choice experiment by a simple 

’’global” hypothesis, namely that responding at the start of each new session is 

a function of responding during several previous sessions, not just during the pre­

vious session. This view describes the global cumulation process that underlies 

the cumulative effects model (although that model cannot explain Mazur's data 

because it has no provision for stimuli or time), and is also consistent with the 

consolidation long-term memory that encodes remote reinforcement experience in 

the present model. The present model, in addition, predicts that the magnitude of 

spontaneous recover}’ will be lowest in the first posttransition session, rather than 

largest, as Mazur found, if the intervals between posttransition sessions are made 

shorter (e.g., at the end of the transition session use short ’’probe” sessions sep­

arated by 30-min intersession intervals) - because the course of SR is determined 

by time rather than trials in the model. This experiment does not appear to have 

been done.

There are a few theories of spontaneous recovery, most verbal (Pavlov, 1927; 

Capaldi, 1967, 1971; Rescorla & Wagner, 1972; Mackintosh, 1974), and only very 

few quantitative (e.g., Estes, 1955; unfortunately, Estes’ model is at a molar level, 

and therefore is unable to explain the real-time mechanism for recovery). The 

cumulative-effects model (Davis et al., 1993) can only account for a particular form 

of spontaneous recovery, i.e., regression, that is encountered in choice experiments 

when, in extinction, there is a reversion to an earlier preference, despite the fact 

that this alternative is no longer rewarded.
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Serial R eversal Learning

Experimental data. Reversal learning involves alternating extinct-reinforcement 

contingencies between two choices. After a certain number of trials, subjects show 

progressive improvement in performance. In Davis &c Staddon’s (1990) experiments 

pigeons were exposed to successive daily discrimination reversals and reversals in 

blocks of two and four days in the two-armed-bandit situation. Subjects had to 

choose between two response keys, left (L ) and right (R), each reinforced according 

to probabilistic schedules (1/8). The ’’hot” key varied from day to day in a regular 

fashion (LRLR, LLRR, or LLLLRRRR). Figure 22A shows that pigeons improve 

their performance across days of reversals. A result that could not have been easily 

predicted beforehand is that pigeons reverse faster after exposure to daily reversals 

than to reversals in blocks of two days, and they reverse faster after exposure to 

reversals in blocks of two days than to reversals in blocks of four days (Figure 

22B) - a result similar to the data on frequency of preference-switching of Mark 

and Gallistel, discussed earlier.

Simulation results. I simulate the successive daily reversals problem (LRLR 

case) and reversals in blocks of two (LLRR case) and four (LLLLRRRR case) 

days. In all three cases there were 30 training sessions, with 60 reinforcements per 

session. In the case of daily reversals, during each day responses to a different key 

are reinforced with probability 1/8. In the case of reversals in blocks of two/four 

days, during each series of two/four consecutive days, responses to a different key 

are reinforced with the same probability, 1/8. Figure 22A shows that the percent 

correct responses for one of the alternatives, e.g., left, improves over sessions of 

training. Improvement in performance is due to the slowly varying consolidation 

long-term memory, wclm, which increases at a faster rate than it decays (see 

Appendix).
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Figure 22 Serial reversal learning. (A) Improvement in discrimination perfor­

mance across successive discrimination reversals. The reinforced key (each 

response is paid off with probability 1/8) changes every session (LRLR - sin­

gle alternation); solid line: simulation results; dashed line: experimental re­

sults. (B) Discrimination-reversal performance in successive reversals (single 

- LRLR) and reversals in blocks of 2 (double - LLRR) and 4 (quadruple - 

LLLLRRRR) sessions; solid line: simulation results; dashed line: experimen­

tal results. Reversals are faster after exposure to single alternations than 

to double alternations, and faster after exposure to double alternations than 

to quadruple alternations [experimental data adapted from Davis & Staddon 

(1991)].
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According to Equation 10, as training progresses wclai causes X rs to increase 

faster each day and to inhibit the alternative response at a higher level. At the 

same time, learning expectancy increases over sessions contributing to the increase 

in behavioral inhibition that suppresses the incorrect responses (responses in ex­

tinction). Both effects contribute to increases in performance, i.e., faster reversals.

The theory also predicts (Figure 22B) faster performance when reversals are 

performed on a daily basis compared to reversals in blocks of two days, and faster 

performance when reversals axe performed in blocks of two days compared to re­

versals in blocks of four days. The explanation relies on the dynamics of consol­

idation long-term memory. For instance, in the case of double alternations the 

reinforcement provided for the alternative that experiences two consecutive days 

of acquisition (LLRR) is then extinguished for the next two days, and therefore 

Wclm wiU decay more in extinction for the LLRR pattern than for the LRLR 

pattern. Thus, when the previously extinguished alternative is reinforced again. 

wclm starts increasing from a lower level compared to the LRLR case because of 

the two consecutive extinction sessions during which wclm slowly decreased. In a 

similar way it is explained why reversals are faster in double alternations compared 

to quadruple alternations (Figure 22B).

The explanation for the reversal learning effects presented above is not too 

different from the explanation given by the authors of the original experiment 

(Davis & Staddon, 1990). Their mechanism relies on the properties of the ratio 

between the number of reinforcements for responding at one side and the total 

number of responses on that side (Davis et al., 1993), with reinforcements and 

responses calculated over the whole training history. Therefore, the critical variable 

is the fact that the state of the model is sensitive to the whole training history-. 

In the same vein, in the theory the key variable for explaining reversal effects is 

the consolidation long-term memory, a memory trace that encodes the effects of 

reinforcement over a large time window.
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Effects o f context on stimulus preference

A problem which is still under debate is how the animal uses reinforcement his­

tory to solve the context-dependent choice between two alternatives which were 

previously experienced in conjunction with other alternatives. In a series of recent 

experiments, Williams Royalty (1989) and Belke (1992) question the validity of 

context-free theories of choice that rely on reinforcement probability as the sole 

variable controlling choice behavior.

Experimental data. In an attempt to test the melioration hypothesis (Herm- 

stein &c Vaughan, 1980), Williams & Royalty (1989) showed that contrary to me­

lioration absolute, not local, rates of reinforcement determine preference. Their ex­

perimental procedure (Experiment 1) comprised two alternating multiple-schedule 

discrete-trial components. During the first component, pigeons had to choose be­

tween a VI 20-s and a VI T20-s schedule; the second component was a choice 

between a VI 60-s and a VI 80-s schedule. Each component was signaled by a 

different stimulus. As expected, pigeons approximately matched response and 

reinforcement ratios during components 1 and 2 of the multiple schedule. How­

ever, when the stimulus that signaled the VI 60-s schedule was pitted against the 

stimulus that signaled the VT 120-s schedule, with extinction in effect for both 

alternatives, Williams Sz Royalty found that the VI 60-s stimulus (paired with a 

lean schedule during training, hence associated with a low obtained reinforcement 

rate) was slightly preferred over the VI 120-s stimulus (paired with a rich sched­

ule during training, hence associated with a high obtained reinforcement rate). 

This result contradicts the melioration hypothesis according to which the stimulus 

paired with the schedule that delivers the highest obtained reinforcement rates 

during acquisition (VI 120-s schedule) should have been preferred.

Simulation results. Model prediction, along with the experimental data, are 

shown in Figure 23A. During acquisition the model mean relative response rates 

are 0.81 (experimental 0.87) in the first component (VI 20 - V I120) and 0.56 (ex­

perimental 0.575) in the second component (VI 60 - VI 80), approximately equal
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to the matching ratios. In agreement with Williams &: Royalty’s data, the theory 

correctly predicts that the VI 60-s schedule is preferred over the VI 120-s schedule 

by a factor of 0.62 (experimental 0.554, measured by averaging the results of 5 

of the subjects). This result is explained in the following way. The two stimuli 

that signal the two components of the multiple schedule enter both response units 

corresponding to the left and the right keys, both stimuli being contingent on the 

highest reinforcement probability. Therefore, their contribution to the behavioral 

excitation units is the same in the case of both alternatives. However, this is not 

the case with the left and the right responses. Since the richer schedule is always 

associated with one key, say left, the learning expectancy of the left response in­

crease faster than the learning expectancy of the right response. Therefore, when 

the stimuli signaling the VI 60-s schedule and the VI 120-s schedule are pitted 

together the left responses show a higher level of behavioral excitation compared 

to the right responses. In this way, the response strength unit for the left key (re­

inforced according to the VI 60-s schedule) increases to a higher level and inhibits 

the response strength unit for the right key (reinforced according to the VI 120-s 

schedule), and therefore the VI 60-s schedule is preferred.

Experimental data. Belke (1992) showed that neither absolute nor local rates 

of reinforcement account for context-dependent preference. He showed that a dif­

ference in the absolute rates of reinforcement between concurrent VI-VI schedules 

is not necessary to produce a distinct pattern of preference. Preference reflects the 

previous history of reinforcement associated with the choice stimuli. The experi­

mental procedure comprised two alternating multiple-schedule with concurrent VI 

components. Pigeons were trained on a multiple concurrent VI 20-s VI 40-s, VI 

40-s VI 80-s, each schedule being associated with distinct response keys and sig­

naled by a different color stimulus. I label these four schedules A, B, C, D. During 

training pigeons approximately matched response and reinforcement ratios during 

both components of the multiple schedule.
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Figure 23 Effects of context on stimulus preference. (A) Mean relative response 

rates in each, component of the Williams &: Royalty (1989) Experiment 1 (two 

alternating multiple-schedules): first component - VI 20-s VI 120-s schedule: 

second component - VI 60-s VI 80-s schedule; test component - VI 60-s VI 

120-s schedule. Filled bars: simulation results; empty bars: experimental 

data. (B) Mean relative response rates in each component of Belke's (1992) 

experiment (two alternating multiple-schedules): first component - VI 20-s VI 

40-s schedule; second component: VI 40-s VI 80-s schedule; test component: 

VI 40-s VI 40-s. Each schedule is associated with a distinct response keys 

and is signaled by a different color stimulus. Filled bars: simulation results; 

empty bars: experimental data.
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However, when, the stimuli that signal the two VI 40-s schedules (B-C) were 

pitted against each other, with extinction in effect for both, Belke found that the 

stimulus associated with the VI 40-s schedule previously paired with the VI 80-s 

schedule (C) is strongly preferred over the stimulus associated with the VI 40-s 

schedule previously paired with the VI 20-s schedule (B), despite the fact that 

the rate of obtained reinforcement and the relative response ratios for the two 

VI 40-s schedules were similar during training. Belke interpreted this result, that 

is pigeons prefer the stimulus associated with the schedule that was preferred in 

previous pairings over a stimulus associated with the same schedule but had not 

been preferred in previous pairings, in terms of the context-dependent differential 

properties of stimulus preference.

.Simulation results. Model prediction and experimental data are shown in Fig­

ure 23B. During training the model mean relative response rates on the VI 40-s 

schedule in each component approximately matched the experimental response 

rates on the VI 40-s schedule (roughly 0.56 in each component). In agreement 

with Belke’s data, the theory correctly predicts that the VI 40-s schedule that was 

previously paired with the VI 80-s schedule (c) is preferred over the VI 40-s sched­

ule that was previously paired with the VI 20-s schedule (B) by a factor of 0.85 

(experimental 0.79). This result is explained as a global effect of response com­

petition that determines the preference pattern during training. I label responses 

reinforced by schedules A, B, C, and D as 12,1, R b , Rc , and R q . Since during 

training schedules B and C deliver the same rate of reinforcement, the behavioral 

excitation units that correspond to R b and Rc  will increase to the same value 

facilitating the corresponding response strength units. However, since the rate of 

reinforcement provided by schedule A is four times higher than that provided by 

schedule D, R b is under strong local inhibition from response R A, whereas R c  is 

under weak local inhibition from response R q- The differential inhibition strength 

reflects into the level of the two response strength units, i.e., X f^  <  X ^s- There­

fore, when the stimuli associated with schedules B and C are pitted against one
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another the local inhibitory effects transfer at a global level and, given the same 

rate of reinforcement for both schedules B and C, response competition ensures 

a higher level for than for X ^ ,  and therefore more frequent responses for 

the stimulus associated with schedule C (previously associated with VT 80-s) than 

responses for the stimulus associated with schedule B (previously associated with 

VI 20-s).

The effects of context on stimulus preference presented in this section can also 

be explained by models which rely on the dynamics of time allocation between 

competing alternatives. For instance, Gibbon et al. (1988) assume that subjects 

acquire ’’knowledge” of the actual interreinforcement times associated with each 

response alternative, calculated with respect to those intervals in which a given 

alternative is available, a principle used to explain Williams &c Royalty’s (1989) 

results. In a subsequent analysis, Gibbon (1995) explains Belke’s (1992) results 

by assuming that subjects allocate time to each alternative in a two-phase pro­

cess. The first phase is a decision process for deciding between two alternatives 

by sampling from exponential memories and choosing the more reinforcing of the 

two samples. The second phase is a memory sampling process performed at a rate 

controlled by the overall arousal level (reinforcement rate) in the training context. 

This two-phase process makes subjects in Belke’s experiment slower in deciding in 

the probe signal from the leaner pair (VI 40-s VI 80-s) than in the probe signal 

from the richer pair (VI 20-s VI 40-s), resulting in the surprising time-allocation 

preference for the VI 40-s schedule, previously paired with the VI 80-s schedule, 

pitted against the VI 40-s schedule previously paired with the VI 20-s schedule. 

Gibbon’s theory shares with the present model the idea that the time-allocation 

for each alternative is determined by the overall reinforcement rate. Thus, whereas 

Gibbon hypothesizes that the memory sampling rate is proportional to the overall 

rate of reinforcement, I use the fact that response competition is stronger at high 

overall rates of reinforcement to account for the fact that the subject allocates 

less time to the alternative paired with a rich schedule. This explanation (arousal
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level increases the level of response competition) is also consistent with Gibbon’s 

(1995) new finding, i.e., the puzzling time-allocation preference for a VI 40-s sched­

ule, previously paired with a VI 80-s schedule, pitted against a VI 20-s schedule 

previously paired with a VI 40-s schedule.

In a critique of incremental ’’response strength” models, Williams (1994) sug­

gests that we should rule out models which rely solely on reinforcement probability 

as the fundamental controlling variable, and embrace ’’representational” •views ac­

cording to which ’’the subject acquires veridical knowledge of the frequency of 

reinforcement associated with the different response alternatives, and then on the 

basis of some choice rule allocates its behavior accordingly (p. 707).” Williams 

also suggests that we need to ’’embellish probability-based models with additional 

assumptions about the nature of the response unit” . The theory offers a way to rec­

oncile stimulus strength models with ’’representational” theories by giving response 

units an internal structure (e.g., response-reinforcement associations, learning ex­

pectancy, response competition, etc.) that provides a substrate for context, one 

of the basic assumptions being that the performance at the level of each response 

depends on the response configuration at the level of all response alternatives.

Experimental analysis

In this section I use the model to test the idea that learning is driven by both local 

and global processes. The theory presented in the previous sections has been ap­

plied to a wide range of operant conditioning phenomena at different time scales. 

The major interest in this section is to investigate whether the theory can sug­

gest new experiments to help understanding the nature of choice behavior. Under 

stable environmental conditions it is well established that in probabilistic rein­

forcement schedules responding eventually fixates on the richest choice alternative 

that provides the maximum reinforcement (e.g., larger magnitude, higher proba­

bility of occurrence, shorter latency). However, what alternative will be preferred 

when both reinforcement probabilities are made equal? Many studies indicate
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that preference is distributed equally between the two choices, whereas at least 

one other study shows that choice can fixate on one randomly determined alter­

native (Homer <fc Staddon, 1987). I claim that the pattern of preference with two 

equal alternatives cannot be predicted without knowing the reinforcement history. 

Unfortunately, I have not been able to find an appropriate study that addresses 

this issue.

A critical test of the theory is to use model predictions to understand how 

historical information (amount of training) biases the pattern of preference when 

the environment is destabilized. Specifically, how the historical information is being 

used to choose between two equal alternatives that did provide reinforcement at 

different rates in the past.

M ethod

The following experiment compares the performance of 4 experienced hungry pi­

geons (85% free-feeding weight) in a situation in which historical information 

(amount of training) is used to evaluate the pattern of preference in a two-armed 

bandit paradigm (responses on two alternatives are reinforced with different prob­

abilities, or concurrent VR-VR schedule). The subjects were trained in a two-key 

pigeon chamber in which each key had a different color. A dim houselight provided 

general illumination, except during reinforcement, when it was replaced by a light 

over the hopper. The procedure was implemented and data collected by a 386 

computer located in an adjacent room.

The experiment consists of a four-phase cycle, three acquisition phases and one 

extinction phase (see Figure 24 for a schematic diagram). The four phases are: 

Phase 0 -  concurrent VR-VR interdependent schedule in which both reinforcement 

probabilities are equal to the mean of the reinforcement probabilities in the next 

phase. A reinforcement is offered for pecking the left/right key only if the previous 

reinforcement has been offered for responding to the opposite side.
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F ig u re  24 Schematic diagram of the experimental procedure. p\ and p2 represent 

reinforcement probabilities for responding at two keys. Phase 0 -  interdepen­

dent reinforcement schedule in which p\ = py, Phase 1 -  concurrent VR-VR 

schedule in which p\ > p2 for N  reinforcements: Phase 2 -  concurrent VR-VR 

schedule in which the previous phase is maintained for 10 reinforcements after 

which both probabilities are made equal to the lowest probability {p\ := p2): 

Phase 3 -  Extinction (p\ =  p2 =  0). The cycle continues with a new condition 

being tested (e.g., number of reinforcements, N).
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This phase is necessary to obtain stable unbiased response patterns (each acqui­

sition session consists of 60 reinforcements). Phase 1 -  two-key concurrent VR-VR 

situation with probabilities p i  and po,  where p \  > po. This phase consists of a 

variable number N  of sessions (1 or 5, with 60 reinforcements per session). Phase 

2 -  one transition session which begins with the same reinforcement conditions as 

Phase 1. After 10 reinforcements the probability of the rich side becomes equal to 

the reinforcement probability on the lean side, i.e., pi := P2 - The transition ses­

sion is followed by one identical session (p i  = po), but without the 10-reinforcement 

pretransitory component. Phase 3 - extinction sessions that last until an interre- 

sponse time greater than 10 minutes. At the end of Phase 3 a new condition is 

tested (i.e., different number of reinforcements in Phase 2 and/or a new pair of 

reinforcement probabilities, p i  and po) by exposing the same animal to Phases 0, 

1 ,2 , and 3 presented in this order.

R esults

I measured the percentage responses on the ’’lean” key (responses on this key 

were always reinforced with probability p i )  in the last session of Phase 1 and 

in the transition session of Phase 2. The number of reinforcements in Phase 1 

was varied from 60 (1 session) to 300 (5 sessions) across conditions. Figure 25 

shows the real-time pattern of preference in all subjects during the last session 

of Phase 1 (p\ =  0.15, p2 = 0.05) and during the transition session of Phase 2 

(Pi =  P2 =  0.05) when the number of reinforcements in Phase 1 is 60. In Phase 1 

the percentage of responses on the ’’lean” key indicates that the rich side is greatly 

preferred. However, in Phase 2, after both reinforcement probabilities are made 

equal, the response shows strong preference (over 60% in all subjects over the last 

200 responses collected on both keys) for the previously lean side.
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F igure  25 Experimental results (N=60 RFs). Data are from four pigeons exposed 

to a concurrent VR - VR schedule in which the ’’lean” and the ’’rich” keys 

are reinforced with probabilities p\ =  0.15 and po =  0.05 (Phase 1). After 

60 reinforcements in Phase 1, the reinforcement probability for the '’rich” key 

becomes equal to the reinforcement probability for the ’’lean” key (Phase 2). 

Data is presented in parallel for all four subjects (0027, 0869, 0883, 1346). 

Average response percentages over the last 10 blocks in Phase 2 are calcu­

lated. Responding in Phase 2 shows that following the shift in reinforcement 

probability preference gradually changes toward the ’’lean” key (preference 

over 60% in all four subjects). The vertical dashed line denotes the approx­

imate block when Phase 2 was applied. The figure shows the percentage of 

responses in the last session of Phase 1 and in the transition session of Phase 

2 .
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Figure  26 Experimental results (N=300 RFs). Data are from four pigeons ex­

posed to a concurrent VR - VR schedule in which the ’’lean” and the ’’rich” 

keys are reinforced with probabilities p\ =  0.15 and po =  0.05 (Phase 1). 

After 300 reinforcements in Phase 1, the reinforcement probability for the 

’’rich” key becomes equal to the reinforcement probability for the ’’lean” key 

(Phase 2). Data is presented in parallel for all four subjects (0027, 0869, 0883, 

1346). Average response percentages over the last 10 blocks in Phase 2 are 

calculated. Responding in Phase 2 shows that following the shift in reinforce­

ment probability the ’’rich” key remains preferred (preference over 65% in all 

four subjects). The vertical dashed line denotes the approximate block when 

Phase 2 was applied. The figure shows the percentage of responses in the last 

session of Phase 1 and in the transition session of Phase 2.
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If the number of sessions in Phase I is extended from 1 to 5 sessions (300 RFs) 

the number of responses to the lean key decreases as the preference becomes more 

exclusive (Figure 26 -  Phase 1). In these conditions, when pigeons switch to Phase 

2 they continue to prefer the previously rich side (Figure 26 -  Phase 2), despite 

the fact that both reinforcement probabilities axe made equal, thus obtaining a 

completely opposite result from the situation in which only 60 reinforcements are 

offered in Phase 1.

These surprising results are reliable and they have been obtained in all of the 

subjects. During Phase 2 data was collected in blocks of 20 responses (rather 

than 40 as during Phase 1) in order to detect any variation in the distribution of 

responses between the two keys. The pattern of preference illustrated in Figure 

25 (Phase 2) is a transient effect. It typically disappears in the second session of 

Phase 2 when all pigeons distributed their responses equally between the two keys 

(50% preference -  data not shown). Also, data from Phase 0 and Phase 3 is not 

shown because of the predictibility of these results (equal response proportions in 

Phase 0 and extinction in Phase 3).

The simulation results (Figure 27) indicate good quantitative fits to experimen­

tal data. Phase 0 has been simulated by starting with equal response proportions 

to the two keys and identical parameter values associated with the two response 

units. Phase 3 has been simulated by exposing the model to prolonged extinction 

until no response was recorded. The results illustrated in Figure 27 are explained in 

the following way. After 60 reinforcements in Phase 1, the decline in reinforcement 

probability for the rich side causes a mismatch between the short and long-term 

expectancies for the ” rich” alternative. Since short-term expectancy decays faster 

than long-term expectancy, X i u  — X sm  >  0 and therefore the response on the 

’’rich” side is suppressed. In these conditions (reinforcement overprediction) re­

sponding on the ’’rich” side drops below the level that would be normally expected 

when the reinforcement probability is 0.05, and the competition between responses 

ensures that preference shifts toward the ’’lean” side.
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Figure  27 Simulation results. Percentage of responses on the ’’lean” key was 

calculated in the following conditions: Phase 1 (pi =  0.15;po =  0.05; N  = 

60RFs)]  Phase 2 (pi =  0.05;po =  0.05; N  =  60RFs);  Phase 1 (p\ =  0.15; po =  

0.05; N  =  300.R.Fs); Phase 2 (pi =  0.05;po =  0.05; N  = 300RFs).  Each phase 

is described in the text. All the parameters used here have the same values 

as in the previous simulations (see The dynamics of operant conditioning), 

except for aio =  10-4  and <113 =  10-2.
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However, if Phase 2 occurs after a longer exposure to Phase 1 (5 sessions), the 

contrast effect shown in Figure 27 (60-RFs condition) disappears and preference 

remains stable for the previously rich side. This result can be explained as an 

influence of the facilitatory effect of the consolidation long-term memory ( wclm ) 

that is able to cancel the suppressive influence of reinforcement overprediction. 

Relatively extensive reinforcement training in Phase 1 ensures a high level of the 

consolidation long-term memory for the ’’rich” key, an effect which tends to mask 

the suppressive influence of the mismatch between long- and short-term expectan­

cies, and animals react to the change in reinforcement probability as during the 

one-session Phase 1.

The effects illustrated in Figures 25 and 26 cannot be accommodated by a 

simple stimulus strength theory. For instance, if one assumes that the effect of 

reinforcement is cumulative, then both before and after the occurrence of the shift 

in reinforcement probability preference will always stabilize to the ’’rich” side. 

The reason is a higher response strength value for the rich side, even after the 

shift. In contrast to these results, the theory predicts that upon the occurrence of 

the change in reinforcement probability the preference should shift from the side 

which previously provided reinforcement with probability 0.15 to the side which 

previously provided reinforcement with probability 0.05, despite the fact that both 

short and long-term obtained reinforcement rates for this side are at a lower level 

than those of the other side. Furthermore, the present model correctly predicts 

that the effect shown in Figure 25 is reversed after extended training (Figure 

26), a result which could be hard to accommodate by other theories of operant 

conditioning.

The theory-guided results presented here have serious implications for under­

standing the allocation of preference in operant studies. The main finding is that 

short- and long-term memory processes coexist and their interaction is crucial. 

Local models would predict preference for the ’’lean” side during the transition 

session (some local models have been shown capable to produce rebound effects as
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illustrated in Figure 25, Phase 2), independent on the previous training experience, 

whereas global models would put more weight on the long-term reinforcement his­

tory and therefore they would always predict preference for the ’’rich” side. Only 

a model that considers both short and long-term processes, such as the multi­

ple time-scale model presented here, would be able to explain the data presented 

here, as well as other hard-to-explain phenomena in the operant literature (see for 

example Mark & Gallistel, 1994 and 1995: Nevin, 1988).

Discussion

I hypothesize that the process of conditioning involves the formation of associa­

tions between competing operant responses (and environmental stimuli) and the 

reinforcement. These associations are used to build stimulus- and response-specific 

short and long-term learning expectancies. The operant response is controlled by 

the ensemble behavioral excitation and behavioral inhibition which integrates the 

mismatch between long and short-term learning expectancy. The theory' has pro­

visions for historical effects of reinforcement: with extended training the efficacy 

of response control by the expected reinforcement increases via slow changes in the 

consolidation long-term memory variable.

Five principles are crucial to the model: (1) Learning dynamics reflect the op­

eration of processes at at least two different time scales (short and long). (2) A 

key feature of conditioning is formation of estimates of the degree of association 

between responses and reinforcement and stimuli and reinforcement. (3) Aggre­

gate response-reinforcement and stimulus-reinforcement associations are defined as 

learning expectancy. (4) A consolidation long-term memory incorporates sensitiv­

ity to the whole reinforcement history. (5) The operant response is controlled by 

comparison between expected and experienced events. This idea can be contrasted 

with the ideas advanced by other theories of conditioning which assume that the 

goal of learning is to accurately predict the actual or the future reinforcement 

levels, e.g., Klopf (1988), Sutton Barto (1990), Schmajuk &: DiCarlo (1992).
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All associations in the model are built as ieaky-integrator units, a concept widely 

supported in the modeling community in both psychology (e.g.. Grossberg, 1982: 

Davis et al., 1993; Schmajuk k  DiCarlo, 1992) and neuroscience (e.g., Stemmier et 

al., 1995; Douglas et al., 1995). Gallistel (1990) has raised a number of objections 

to integrator models: that a single rate parameter cannot cover all time scales and 

that ’’they conflate four unrelated aspects of the problem: what the animal learns, 

how rapidly it learns it, how rapidly it forgets it, and its uncertainty regarding 

the correctness of what it has learned” (p. 377). He goes on to conclude that ”a 

representational account is called for” (p. 382). The present model, and other 

multi-unit models (e.g., Staddon k  Higa, 1996), show that these are not criticisms 

of integrator models in general, but only of the single-unit model. Simple units, 

appropriately arranged, can do as well as any ’’representational” scheme, with the 

added virtue of providing a testable dynamic process.

The present theory uses associations which change continuously in strength in 

reaction to external events such that at the end of training a new stable state is 

reached. The stability of new states goes along with partial destabilizing of the 

previous stable states (e.g., competing responses decrease in strength). During ex­

tinction association strengths gradually decrease and the corresponding response 

loses its stable properties (i.e., rate of increase and asymptotic level). But this 

’’forgetting” is not total. For instance, the slowly varying consolidation long-term 

memory allows it to encode events over extended time intervals, despite the to­

tal ’’discharge” of the short and long-term memory for associations. The learning 

mechanism allows each association strength to be moved by the learning process 

from any state to any other state via reversible state transitions. Although condi­

tioning increases all association strengths, whereas extinction decreases them, these 

changes axe reversible and are fully controlled by the reinforcement conditions. Be­

cause of the different decay time constants for the short and long-term associations, 

behavioral inhibition (a measure of reinforcement overprediction) acts to suppress 

the response via fixed inhibitory connections. This process is one way to resolve
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the long-standing controversy about whether extinction decreases the strength of 

excitatory associations or strengthens competing inhibitory' associations. In the 

model, extinction only decreases the strength of excitatory associations, which 

then has an effect on response inhibition.

As it was mentioned earlier, a few other dynamic theories have been proposed 

to account for the dynamics of conditioning. I conclude by saying a bit more about 

how the present theory relates to some of the alternatives.

A key aspect of the theory presented here is that the operant response is con­

trolled by interplay between expected (long-term) and experienced (short-term) 

reinforcement. This principle has been applied for the first time to operant con­

ditioning, but a similar idea has been used previously by some models for clas­

sical conditioning. For instance, Daly & Daly’s (1982) model (DMOD), Klopf’s 

(1988) drive-reinforcement model (D-R), Sutton &: Barto’s (1990) temporal differ­

ences model (TD) and Schmajuk &: DiCarlo’s (1992) model (S-D), share with the 

present theory the idea that learning is driven by the mismatch between expected 

reinforcement and current events. But besides the completely different implemen­

tation of the ”mismatch” idea, the encoded event is quite different. The present 

theory encodes the mismatch between short and long-term leaming-expectancy 

units that represent an aggregate measure of the associations between responses 

and discriminative stimuli and the reinforcement. Other theories use other kinds 

of mismatch: (a) between the actual value of the US, either appetitive or aversive, 

and the sum of three types of stimulus-specific associative strengths: approach, 

avoidance, and counterconditioning (DMOD), (b) the absolute difference between 

the US and the aggregate prediction of all stimuli present, including the US (S- 

D model), (c) changes in stimulus level associated with changes in response level 

computed at consecutive time steps (D-R model), or (d) successive predictions of 

reinforcement (TD model). All these theories (a-d) have in common the assump­

tion that the basic conditioning mechanism is built around the mismatch between 

the US level and the US prediction, or around the mismatch between successive
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predictions of the US, whereas the present theory utilizes the mismatch between 

the association between responses or discriminative stimuli and the reinforcement. 

An important distinction: it is not the reinforcement per se that is basic to operant 

conditioning, but its association with the response and with contextual stimuli.

Another key feature of the present theory is sensitivity to the history of rein­

forcement. It is shown how the whole history of reinforcement can be encoded 

by consolidation long-term memory, a principle useful for explaining phenomena 

such as spontaneous recovery or improvement in performance across daily rever­

sals. Whole-history sensitivity is not a new concept. It is embodied most directly 

in the cumulative-effects model (CE: Davis et al., 1993), in the form of separate 

long-term memo-ries for responses and reinforcements, accumulated during the 

whole history of training. The CE model assumes that the only link between re­

sponses and the reinforcement is the ratio between their long-term memories; but 

the present theory assumes that responses and reinforcement become associated 

early in processing; consolidation long-term memory reflects the strength of their 

connection. But nonlocal (and non-associative and non-temporal) principles (like 

the CE model) are not sufficient to explain all experimental data. The CE model 

has difficulty with effects of extended training on positive and negative contrast, 

because the model implies that responses and reinforcements become less effec­

tive after long training, whereas the data show that successive negative contrast is 

stronger after longer pre-shift training. Of course, local principles (like the Bush- 

Mosteller-type models or Killeen’s, 1994, model) are not sufficient either. Local 

models cannot explain serial-reversal improvement or spontaneous recovery, for 

example.

One important distinction between the present theory and other dynamic the­

ories of operant conditioning is its comprehensiveness. I have shown that several 

apparently unrelated phenomena reflect common underlying processes. I start with 

a few key principles and show that many operant conditioning phenomena can be 

explained as emergent properties.
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Principles such as response competition and multiple time scales (MTS) in 

event processing have been used previously in different forms to explain limited 

data sets, but the strength of the present model lies in its capacity to assemble 

these principles into a coherent mechanism. However, it would be wrong to assume 

that any model which incorporates competition or multiple time scales can explain 

the data presented here: earlier MTS models, for example, have attempted to deal 

only with highly restricted data sets, such as rate-sensitive habituation and some 

aspects of contrast and the PREE. They were not intended to cover the full range 

of operant conditioning phenomena. The present model is an attempt to go beyond 

models that deal only with arbitrarily restricted datasets to cover the full range of 

phenomena in operant conditioning.

Another point is that history-dependence, a property often ignored in oper­

ant conditioning studies, and its quantitative measure (number of reinforcements) 

should be given more careful consideration. The amount of training should be 

considered as another independent variable, along with reinforcement probability 

or reinforcement delay. Its reconsideration is potentially beneficial for the field of 

operant conditioning, and learning in general. It is shown here that a study that 

examines the role of length of training in operant studies is able to reconcile appar­

ently conflicting experimental results (which in fact are conflicting only because 

they reflect large variations in the training history).

Finally, the present theory has implications for animal-learning methodology. 

Most previous dynamic theories for operant conditioning could not deal with long­

term historical effects. This led the field of animal learning to use the so-called 

” between-group” methodology, which requires large numbers of supposedly ” naive” 

subjects, to be used for a limited number of daily sessions and then ”sacrificed” . 

The alternative ’’within-subject” approach, which uses a small number of animals 

for long-term experiments, declined in popularity because it appeared to be un­

suitable for the study of learning, which depends strongly on the animal’s training 

history. A good real-time theory describes exactly how the state of an animal
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depends upon its history. Such a theory can be tested using repeated experiments 

on the same organism. Thus, instead of trying to equate histories by using large 

groups of naive animals, a few animals with known histories can be used in repeated 

experiments.
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Short and Long-Range Cortical Dynamics: A Model of 

Orientation-Dependent Context Effects in Primary Visual Cortex

A bstract

A fundamental property of neurons in primary visual cortex, in addi­

tion to their selective response to particular oriented bars within their 

receptive field, is the influence from outside the ’’classical” receptive field, 

usually termed surround or context effects. It is generally accepted that 

context effects depend on the relative contrast between center and sur­

round (Toth et al., 1996; Weliky et al., 1995; Knierim Van Essen. 

1992). However, increasing evidence argues that context effects are also 

orientation-dependent. It has been demonstrated that the same center 

stimulus can both strongly suppress and facilitate responses as a func­

tion of surround orientation. Unfortunately, although several studies 

(e.g., Stemmier et al., 1995; Somers et al., 1995) have investigated the 

involvement of long-range horizontal connections, that link cells with sim­

ilar orientation preference over large regions of ’visual space, as the most 

popular candidate for explaining contrast-dependent context effects, the 

exact nature of orientation dependency remains unresolved. Here I de­

scribe how a large-scale model that incorporates orientation-dependent 

effects of horizontal connections and cortical feedback can use the inter­

play between the effect of short and long-range horizontal connections to 

disinhibit orientation detectors along a direction away from the surround 

orientation, an effect amplified by the excitatory cortical feedback. The 

model’s properties are utilized to explain several orientation-dependent 

context effects in primary visual cortex, as well as context-dependent 

psychophysical effects such as geometrical illusions of orientation (e.g., 

Zollner illusion).

123
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Introduction

A prominent feature of the connectivity in primary visual cortex (V I) is the ex­

istence of long-range horizontal connections (Gilbert k  Wiesel, 1979: Rockland & 

Lund, 1982; Livingston k  Hubei, 1984; Martin k  Whitteridge, 1984) that have 

axon collaterals extending for several millimeters within the superficial layers of 

VI. Since these connections link cells across distinct regions of the visual field 

they have the potential to underlie influences on cortical neurons from outside 

their classical receptive field (the classical receptive field is defined as the region 

in which a given stimulus triggers a suprathreshold response from the cell).

There are several studies that have investigated the nature of the extraclassi- 

cal receptive field influences (context or surround effects). The main finding is 

that context effects in VI are both contrast and orientation-dependent. Thus, the 

same surround can either facilitate or suppress the response to a preferred stimulus 

within the classical receptive field depending on the intensity of the center stim­

ulus. Although the surround stimulus alone, or in the presence of a low-contrast 

center stimulus, is only able to evoke a weak excitatory response, when the center 

stimulation is made stronger the response is suppressed. These effects of stimulus 

contrast are highly reliable (e.g., Weliky et al., 1995; Toth et al., 1996) and several 

theoretical proposals have tried to account for them (Stemmier et al., 1995; Somers 

et al., 1995.

The orientation dependency of context effects means that the presence of an 

iso-oriented surround stimulus beyond the classical receptive field suppresses the 

response to an optimal stimulus within the classical receptive field (Gilbert k  

Wiesel, 1990; Knierim k  Van Essen, 1992; Grinvald et al., 1994). In contrast, 

stimulating the extraclassical receptive field with an orthogonal or oblique grating 

in conjunction with optimal stimulation within the classical receptive field has been 

shown to ’’supra-optimally” facilitate responses (Sillito et al., 1995; Lennie et al., 

unpublished data; Gilbert k  Wiesel, 1990). In addition, Gilbert k  Wiesel (1990) 

showed that the presence of surround stimuli oriented counterclockwise from the
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cell’s optimal orientation is able to shift the cell’s orientation tuning curve in a 

direction away from the surround orientation. The shift is reversible, and is fully 

controlled by the situations in which the surround is either present or absent.

In all of the context-dependent studies that will be discussed here the distance 

between the center and surround stimulus varies between 1° and several degrees of 

visual angle. Hence, the most likely candidate to explain the orientation-dependent 

surround modulation is the plexus of long-range horizontal connections. Recently, 

Weliky et al., 1995, have shown that in vivo optical imaging and in vitro whole-cell 

patch-clamp recordings of horizontally evoked excitatory and inhibitory synaptic 

inputs onto single neurons revealed maximum synaptic inputs when the record­

ing and stimulation electrodes are located within orientation columns sharing the 

same specificity. In addition, Weliky &c Katz (1995) showed that the amplitude 

of synaptic inputs onto single cells evoked from distant cortical sites is modulated 

by a cyclical pattern of large and small amplitude responses, with the maximum 

correlation for neighboring cells and gradual shifts with changes in recording po­

sition. Therefore, it can be concluded that the strengths of long-range horizontal 

connections are maximum between distant cortical cells with the same orienta­

tion preference, and they gradually decrease with increasing the relative preferred 

orientation between distant cells.

I here propose a model of short and long-range cortical dynamics in VI that 

helps resolve the apparently conflicting orientation-dependent effects. The model 

investigates the effect of three major types of input to cortical neurons: feedforward 

input (from LGN to layer 4 and from layer 4 to layer 2-3), input from intrinsic 

circuits via horizontal connections (short and long-range corticocortical connec­

tions), and input via cortical excitatory feedback (corticocortical feedback from 

layer 6 to layer 4). The model assumptions are different from those of other theo­

retical investigations of context effects in VI. These differences are: (a) the use of 

orientation-dependent connection strengths of long-range horizontal projections, 

with the strengths decreasing with the increase in the relative orientation between
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distant cortical sites; (b) the use of the massive excitatory cortical feedback from 

layer 6 to layer 4, in addition to local recurrent excitation. The model suggests 

that the paradoxical dynamic modulation by the surround is due to changes in the 

gain of the local circuitry as an effect of a disinhibitory mechanism at the level 

of local circuits triggered by the long-range horizontal connections and amplified 

by the cortical feedback [previous versions of this model were presented elsewhere 

(Dragoi, 1995; Dragoi & Wolbarsht, 1995; Dragoi, in press)]. Furthermore, I sug­

gest a link- between the orientation-dependent context effects and the perception of 

geometrical illusions, a demonstration being offered in the case of Zoliner illusion.

M aterials and methods 

The m odel

The model simulates parts of the following circuit: retina —> LGN —*■ V ia  (layer 

4C) —► V lb (layer 2-3) —► VI (layer 5) —*• VI (layer 6) —*• V ia (Figure 28). For 

manageability purposes, cells in VI (layers 5 and 6) are not modeled explicitly; 

since the projections from layer 2-3 to layer 5 and from layer 5 to layer 6 are purely 

excitatory the model was simplified by reducing the processing in layers 5 and 6 to 

a nonlinear filter that integrates the activity of a large number of pyramidal cells in 

V lb to generate the excitatory cortical feedback to layer 4. Cortical feedback has 

been hypothesized to amplify the total feedforward input to layer 4 cells by acting 

as an ’’active conductance” (Douglas et al., 1995). The nonlinearity is necessary 

to control the amplification factor on the feedback loop.

For simplicity, a monocular patch of the visual field was divided into 21 x 

21 locations, where each location can be uniquely mapped onto a full set of 72 

orientation columns (2.5° resolution). The model configures 31,752 LGN neurons 

arranged on the array of 21 x 21 locations, with 72 cells per each location of the 

visual patch, and 63,504 cortical neurons arranged on two layers that correspond 

to V ia  (layer 4C) and V lb (layer 2-3).
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F igure  28 Model macrocircuit All feedforward pathways (black arrowheads) are 

excitatory. Corticocortical connections (gray arrowheads) are both excitatory 

and inhibitory. Corticortical and corticogeniculate feedback pathways (white 

arrowheads) are excitatory.
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LGN cells receive stimulus-specific input which is maximal for the LGN cell 

that corresponds topographically to the cortical cell whose orientation preference 

matches that of the input stimulus [a similar assumption has been used in Stemmier 

et al. (1995)]. The spread of geniculate inputs to the cortex ensures that each 

LGN cell synapses within the same hypercolumn to a group of cortical cells within 

a broad range of orientations (with a spread of 60°). One LGN cell projects to 

a group of 25 neighboring cortical simple cells in layer 4C centered around the 

cell which it corresponds topographically. The thalamocortical synapses comprise 

about 6% of all synapses received by layer 4 neurons (Garey k  Powell. 1971; 

Homung k  Garey, 1981; Winfield k  Powell, 1983; LeVay, 1986; Ahmed et al.. 

1994).

Cortical cells receive center stimulation as an oriented input stimulus applied 

to the receptive field (RF) center (RF size is idealized to 1 location) and surround 

stimulation as oriented stimuli applied to the surrounding hypercolumns. Both 

V ia  and V lb cells develop short-range connections within each hypercolumn, i.e.. 

recurrent excitation in the range of 15°, and intracortical inhibition in the range of 

60° (Toyama et al. 1981; Michalskiet al., 1983; H ataet al., 1988), with the strength 

of connections decreasing as cortical neurons are more widely separated (Fries et 

al. 1977; Nelson k  Frost 1981), i.e., they differ more in orientation specificity, 

see Figure 29. Long-range horizontal connections are made only onto cells in Vlb 

within a circular patch of radius 4 at the center. They are made preferentially 

onto iso-oriented cells (Gilbert k  Wiesel, 1989; Malach et al., 1993), the strength 

of synapses decreasing with the increase in the relative orientation between pre 

and postsynaptic cells (Weliky k  Katz, 1994; Weliky et al., 1995).
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F igu re  29 Model connectivity ■patterns. (A) Feedforward projections from LGN 

to VI (layer 4C) and from layer 4 (Via) to superficial layers (Vlb). (B) Short- 

range cortical connections. Both intracortical excitatory (range 15°) and in- 

tracortical inhibitory (range 60°) connections are established locally between 

cells in V ia  and Vlb. (C) Long-range horizontal connections. The strengths 

of long-range connections are both distance- and orientation-dependent. They 

decrease with increasing distance and relative orientation between cortical 

sites (range 45°). (D) Cortical feedback. Both corticogeniculate and corti- 

cortical feedback projections are excitatory. Both projections are focused in 

spatial terms and more difuse in the orientation domain.
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M odel im plem entation

LGN cells are modeled as single units in which the mean rate of firing, I t . is given 

by:

dL-  1+1
— i =  —O.OlLj + J M s  + Fi)( 1 -  Li) -  Ju £  LjLi (11)
dt j=i-i

where the first term, —0 .01L,- describes the spontaneous decay in the absence of 

any stimulation; J; =  0.002 describes the strength of the feedforward connections 

(one-to-one projections) between retina (i?,) and LGN (£,-); i?t- is the stimulus- 

specific external input to for an input stimulus of orientation 0 , comparable 

results are obtained using either linear (i?,- =  m ar(0 ,1 — y (0 — 0,[)) or cosine 

(Ri = max(0, cos(3tt(9 — 0,)/36)) distributions of the input stimulus (computer 

simulations were run using a linear distribution), where 0,- is the orientation pref­

erence of the cortical cell which corresponds topographically with R t: Jij =  0.4 

describes the strength of the inhibitory connections between neighboring LGN 

cells (lateral inhibition); s is a fixed parameter that ensures that the retinal infor­

mation is processed in the absence of corticogeniculate feedback -  introduced for 

model analysis purposes; F{ is the total feedback that £,■ receives from area VI, 

and it is described by:

Fi =  fijVlbj) ( 12)
i

where =  0.3 describes the strength of corticogeniculate connections; h(x) = 

r~^ n  is assumed to be a sigmoidal function (q =  1.15); Vlbj are cells in area V lb 

within a patch of radius 1 (Grieve & Sillito, 1995, have shown that the information 

carried in the corticogeniculate strem, as well as that carried by axons from layer 

6 to layer 4, is relatively tightly focused in spatial terms) that contains projections 

from a large range of orientation selectivities (Harvey; 1980; Sillito et al., 1993: 

Grieve & Sillito, 1995), with an orientation spread of 90°). The corticogeniculate 

synapses outnumber the ascending synapses from LGN to V ia by a factor of 8 .
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The presynaptic activity of cells in V lb is integrated via the cortical feedback in 

order to provide global information used to modulate the rate at which the input 

stimuli are transmitted through the LGN (McClurkin et al., 1994; Mukherjee et 

al., 1995). This view is supported by recent neurophysiological evidence (Sillito 

et al., 1995) showing that cortical feedback serves to lock or focus the cortical 

circuitry onto the stimulus feature by providing global information that can be 

used to adjust local encoding mechanisms to ensure that information transmission 

through the LGN is improved.

Cortical cells are modeled as single units in which the mean rate of firing is 

given by:

- V ia  (layer 4C)

rr/*i k l  k2 k3

=  -O .O lV la rK s+ fiJW j £  £  V i a b l e ,
at j= 1 j= 1 j= 1

(13)

where L,- are geniculate cells that constitute the input for cells in layer 4C (one 

LGN cell projects within a range of 60°) within the same hypercolumn; «/,j = 1 

is the strength of thalamocortical connections; J \fh =  O.2exp_0'01̂ i~5-'1 and Jf*c =  

O.learp-0-01!^-5^ are the orientation-dependent strengths of intracortical inhibitor)-- 

connections (within a range of 60°) and recurrent excitatory connections (within a 

range of 15°) from neighboring cells within the same hypercolumn; F) is the total 

feedback that V l  at- receives from layer 6; s is a fixed parameter that ensures that 

the LGN information is processed in the absence of corticocortical feedback (this 

manipulation is useful when the model is tested in the absence of feedback), and 

it is described by:

Fi = f t ( £  fijV lbj) (14)
j

where fa  = 0 . 3  describes the strength of excitatory cortical feedback connec­

tions; h(x) = is assumed to be a sigmoidal function (q = 1.15); Vlbj are
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cells in area V lb within a patch of radius 1 (Grieve &: Sillito, 1995, have shown 

that the information carried by axons from layer 6 to layer 4, is relatively tightly 

focused in spatial terms); corticortical feedback contains projections from a narrow 

range of orientation selectivities with an orientation spread of 50° (iso-orientation).

-V lb (layers 2-3)

=  —0 . 0 1  V I bi+Jij  £  V l a y ( l —V l 6 , - ) + Jf-C £  £  V l b j V lb ,
dt  j = i  j = i  j = i

(15)

where V ia , are cells in V ia  that constitute the input for cells in layer 2-3 (one 

V ia  cell projects within a range of ±25° within the same hypercolumn); =  1 is 

the strength of cortical feedforward connections: short-range cortical connections 

are implemented as described above, when Eq. 14 is introduced, and connection 

strengths have similar values.

Long-range connections emerge from excitatory cells and contact both inhibitor}' 

and excitatory cells (Kisvarday et al., 1986; McGuire et al., 1991). Since at high 

stimulus contrasts the response of both excitatory and inhibitory cells can be ap­

proximated by a linear function (Somers et al., 1995) the long-range effect of one 

pyramidal cell, Vlfy, on another pyramidal cell, V16,-, can be modeled as:

V I b j ( J ^  -  iJ\°h) (16)

where V Ibj is the firing rate of the excitatory presynaptic cell;

Jf*c =  Q.8exp~0'5̂ 9,~9̂ ' ^  and J\*h =  0 .4exp~0-3(9i-9j)Vvr axe the orientation- 

and distance-dependent synaptic strengths of long-range horizontal excitatory- 

excitatory and excitatory-inhibitory connections, with 0,- and 9j being the ori­

entation preferences of V I6,- and VI b f r , j  is the radial distance between V16,- and 

V Ibj] d is a contrast-dependent dominance factor such that if d < Jf*c/  J™h the 

net effect of long-range connections is excitatory, whereas if d > J ffc/ J\^h the net 

effect is inhibitory. Since all the stimuli utilized in the original experiments simu­

lated here are presented at high-contrast, and well-documented studies (Hirsch &c 

Gilbert, 1991; Weliky et al., 1995; Toth et al., 1996) have revealed that the effect
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of horizontal connections on the target cell is excitatory when the cell receives 

weak input (low contrast), and inhibitory when the cell receives strong input (high 

contrast), we set d =  4 such that to bias the balance of long-range connections 

toward a net inhibitory effect.

Results

The key orientation-dependent context effects depend on the properties of the 

local cortical circuitry, therefore I will explain first the underhung physiological 

mechanism in qualitative terms, followed by a detailed presentation of the simula­

tion results. Figure 30 describes a model cortical circuit incorporating long- and 

short-range horizontal connections. Long-range excitatory projections originate 

from pyramidal cells in the surround and contact other pyramidal cells as well as 

nearby inhibitory cells, which are locally interconnected (CRF). These connections 

link preferentially iso-orientation domains; more generally, the strength of synap­

tic connections between distant cortical sites varies gradually from zero to a maxi­

mum depending on the difference in orientation preference (Gilbert Wiesel, 1989; 

Malach et al., 1993; Weliky & Katz, 1994; Weliky et al., 1995). Therefore, activa­

tion of horizontal connections can evoke direct iso-orientation excitatory and mul- 

tisynaptic inhibitory inputs onto local pyramidal cells in an orientation-dependent 

fashion: stronger activation of iso-orientation domains and gradually weaker acti­

vation of non-iso-orientation domains. Since the context effects to be explained in 

this study have been obtained at high contrast for both classical and nonclassical 

receptive field stimulations, and such high contrast stimuli were shown previously 

to bias the relative balance of excitatory and inhibitory inputs toward strong in­

hibition (Weliky et al., 1995; Toth et al., 1996), there will be stronger activation 

of inhibitory cells in the nearby of iso-orientation domains and weaker activation 

of inhibitory cells in the nearby of non-iso-orientation domains. An example is 

shown in Figure 30 in which the ” iso-orientation” inhibitory cell on the left is ac­

tivated more strongly than the ’’non-iso-orientation” inhibitory cell on the right.
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Because inhibitory cells are well-known for their lack of adaptation (McCormick et 

al., 1985), "iso-oriented” inhibitory cells are able to fire continuously in response 

to a tonic center and surround stimulus and thus exert a  tonic inhibition on their 

postsynaptic targets, including other inhibitory cells. The effect of this interaction 

is the disinhibition of ”non-iso-orientation” inhibitory neurons (e.g., see Figure 30 

-  the inhibitory cell on the right). This disinhibitory interaction can remove tonic 

inhibition from pyramidal cells in the nearby of ” non-iso-orientation” inhibitory 

neurons (e.g., see Figure 30 -  the pyramidal cell that prefers vertical orientation). 

This type of interaction has been previously observed in the pericruciate cortex of 

the cat (Kelly &: Renaud, 1974). Thus, the net effect is that upon the application 

of an oriented surround in conjunction with a center stimulus oriented away from 

the surround, non-iso-oriented pyramidal cells are released from local inhibition 

and fire more vigorously than under no-surround condition (at the same optimum 

center stimulus).

Context-dependent removal of inhibition through local disinhibition is an intri­

cate process that yields an orientation-dependent dynamic gain control mechanism: 

an oriented surround increases the responsiveness of non-iso-oriented pyramidal 

cells, which respond tonically to the thalamocortical input, via a disinhibitory 

mechanism, while iso-oriented pyramidal cells are strongly suppressed.

The orientation-dependent facilitatory (disinhibitory) effect of the surround can 

be further amplified by the recurrent excitatory cortical feedback connections from 

layer 6 , and for some center-surround configurations the combined effect of disinhi­

bition and feedback amplification can bring pyramidal cells to high "supra-optimal” 

response levels (e.g., Sillito et al., 1995).

Large scale computer simulations were performed to evaluate neuronal responses 

to oriented stimuli that covered (a) the classical receptive field (CRF) alone (center 

stimulus); (b) the classical and extraclassical receptive fields (center +  surround 

stimuli).

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Context effects in visual cortex 137

F igu re  30 Schematic diagram of the interactions between representative cells in 

Vlb embedded in their local network. Cells in the surround project on both ex­

citatory (pyramids) and inhibitory (filled circles) neurons. Since the strength 

of long-range projections is orientation-dependent, there will be an increased 

activation of the ’’iso-orientation’ inhibitory neuron on the left which sup­

presses the ”non-iso-orientation” inhibitory neuron on the right. Therefore, 

cells which prefer stimuli oriented away from the surround orientation will be 

released from inhibition (disinhibition). This effect is further amplified by the 

excitatory cortical feedback which bring responses to a supra-optimal level. 

Solid line -  activity patterns when the CRF is stimulated with a vertical bar: 

Dashed line -  activity patterns when the CRF is stimulated with a vertical bar 

while the surround is stimulated with a tilted bar. Empty circles -  excitatory 

connections; Filled circles -  inhibitory connections.
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Center and surround stimuli were always presented at high, contrast (fixed value 

in the simulations). Both center and surround orientations were varied system­

atically from 0 to 180° to fully investigate the orientation-dependency of con­

text effects. The surround stimulus modulates the response to the center in an 

orientation-dependent fashion. Responses to the center stimulus axe suppressed by 

an iso-oriented surround, whereas responses to the same center stimulus become 

’’supra-optimal” in the presence of an orthogonal or oblique surround. The model 

predicts that orientation-dependent strengths of long- and short-range connections 

can have bi-phasic modulatory effects, depending on the relative orientation be­

tween center and surround. To illustrate the model’s key properties computer 

simulations will be presented to analyze surround facilitatory effects (Knierim L  

Van Essen, 1992; Sillito et al., 1995) and surround suppressive effects (Knierim 

&c Van Essen, 1992). Related experimental results (e.g., Grinvald et al., 1994) 

will be discussed without showing computer simulations. In addition, the same 

mechanism will be applied to demonstrate that the model is able to explain the 

surround-dependent orientation shift effect (Gilbert L  Wiesel, 1990). Finally, I will 

show that the same mechanism responsible for physiological orientation-dependent 

context effects underlies psychophysical effects, such as geometrical illusions of ori­

entation (an example is the Hering illusion).

Orientation-dependent surround suppression and facilitation

Representative experimental data showing both suppressive and facilitatory sur­

round effects are presented in Figures 31A and 32A-B. If the RF is stimulated 

with an oriented bar, iso-oriented stimuli in the surround cause suppressive ef­

fects, while cross-oriented stimuli in the surround cause supra-optimal responses 

in simple cells in primate VI. In Sillito et al.’s (1995) experiment (Figure 31A) the 

surround (annulus) alone has no effect on the cell’s response, which in this case 

fluctuates around the spontaneous level of firing. However, as the surround orien­

tation is varied while the center (inner) stimulus is presented at the cell’s preferred
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orientation, the surround strongiy modifies the response. For surround orienta­

tions between 30° and 90° relative to the cell’s optimal orientation the response is 

strongly increased. Simulation results are shown in Figure 3IB. For iso-oriented 

surround stimuli the response to the center is strongly suppressed (although Fig­

ure 31A does not reflect the iso-orientation suppression, other figures in Sillito et 

al.’s (1995) study such as Figure 1, panels b, c, d, show strong iso-orientation sup­

pressive effects). The model explains iso-orientation suppression by the fact that 

iso-oriented center and surround stimuli activate maximally local ” iso-orientation” 

inhibitory cells that suppress nearby pyramidal cells. In addition, because of the 

spread of intracortical inhibition (60° in the model) suppressive effects also exist 

when the relative orientation between center and surround increases (e.g., 30° in 

Figure 31B), although not sufficiently to trigger facilitatory effects.

If the surround orientation is varied further away from the cell’s preferred ori­

entation (which is 90°), at some critical difference between center and surround 

orientations, equal to the spread of long-range horizontal connections (45°), the 

surround is no longer able to directly influence the ’’vertical” cells. However, 

the surround is still able to exert indirect influences on ’’vertical” cells through 

the disinhibitory mechanism described in the previous section. Therefore, if the 

orientation mismatch between center and surround is greater than 45° the cell’s 

response becomes supra-optimal (weak surround inhibition combined with local 

disinhibition). Furthermore, as the surround orientation deviates further from 45° 

the strength of local inhibition gradually diminishes increasing the gain of the local 

circuit, which now favors strong excitation; the cell’s response becomes more supra- 

optimal. However, if the relative orientation between surround and center increases 

beyond 60°, which is equal to the spread of intracortical inhibitory connections in 

the model, the strength of the disinhibitory mechanism diminishes because ’’iso­

orientation” inhibitory cells do not extend so far and their contribution to the 

disinhibitory mechanism gradually vanishes.
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F ig u re  31 Orientation-dependent surround facilitation. (A) Supra-optimal re­

sponse in a simple cell in primate VI (Sillito et al., 1995). As the orientation 

of the annulus is varied with the inner patch present at the optimum orien­

tation, for orientations of the outer between 30° and 90° the cell’s response 

is strongly increased. (B) Supra-optimal response in cells in VI (theoretical 

tuning curves).
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Figure 32A shows normalized population responses in VI (n=50) when cells are 

stimulated at their optimum orientation (vertical) while the surround orientation 

pattern is varied (Knierim & Van Essen, 1992). Figure 32B shows the result of 

similar surround manipulations, except that normalized individual responses are 

shown (therefore it is not surprising that the normalized response magnitudes from 

panels A and B differ, mainly with respect to the response to the orthogonal sur­

round). According to the model, Figure 32C, maximum suppression is obtained 

when the surround is parallel with the center, and. as the surround orientation 

becomes random, its inhibitory influence diminishes because the strength of long- 

range connections decreases with the mismatch in orientation between center and 

surround. When the surround and the center are orthogonal, the disinhibitory 

mechanism described in the previous section is engaged and the cell’s response 

becomes supra-optimal. This stimulus situation favors psychophysically the per­

ceptual effect of pop-out, i.e., facilitation in the detection of features which are 

very different from context. Pop-out is correlated with supra-optimal responses in 

cells ’’attending” the target stimulus. When the center stimulus is absent, the cell 

whose response rate is measured shows only the background level of activity.

Orientation shift effect

One important instance of surround modulation is the context-dependent orienta­

tion shift effect (Gilbert &: Wiesel, 1990) -  if a cell in the superficial layers of VI, 

that shows preference for 30° stimuli, is presented a surround oriented 30° coun­

terclockwise from the optimal orientation, the cell’s tuning curve is shifted 10° in 

a direction away from the orientation of the surround (Figure 33A). Figure 33B 

shows tuning curves generated when the model is exposed to the same conditions 

as in the original experiment. The model explains the orientation shift effect using 

the disinhibitory influence exerted by the long-range horizontal connections that 

release the orientation detectors from local intracortical inhibition along a direction 

away from the surround orientation.
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F igure  32 Orientation-dependent surround suppression and facilitation. (A) Sur­

round suppressive effect (normalized responses for cortical cells tested with 

different orientation stimuli). The maximum suppression is obtained at iso­

orientation, the strength of suppression reducing as the difference between 

center and surround orientation approaches 90°. This figure was adapted af­

ter Figure 11 of Knierim and Van Essen (1992). (B) Normalized individual 

responses showing an orientation contrast effect (supra-optimal responses) 

when center and surround stimuli are orthogonal. (C) Surround suppressive 

effect (theoretical normalized responses). This figure should be compared 

with the experimental results in Figure 32A.
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F ig u re  33 Context-dependent orientation shift effect. (A) Orientation tuning 

curves for a superficial layer cell without surround (bold line) and with a 

0° surround (simple line). Even though the cell’s initial tuning curve peaked 

at 30°. each time the surround is present there is a shift in the cell’s orienta­

tion specificity to 40° in a direction away from the surround. This figure was 

adapted after Figure 4 of Gilbert and Wiesel (1990). (B) Context-dependent 

orientation shift effect (theoretical tuning curves). This figure should be com­

pared with the experimental results in Figure 33A. (C) Cortical response 

histogram. Right -  stimulus arrangement in three experimental conditions: 

30° stimulus in the CRF; 30° stimulus in the CRF in conjunction with a 0° 

stimulus in the surround; 40° stimulus in the CRF in conjunction with a 0° 

stimulus in the surround.
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When the 0° surround is applied, the net contribution of long-range connections 

is strong suppression of cells with orientation specificities nearer the surround 

(e.g., cells tuned to 30°). Therefore, the presynaptic potential with which these 

cells control the strength of local inhibition to neighboring cells within the same 

hypercolumn diminishes. Under these conditions, cells in the center which prefer 

stimuli (e.g., 40°) oriented away in a direction clockwise from surround orientation 

and are only weakly suppressed by the surround (Figure 33C). are released from 

intracortical inhibition and respond to the excitatory feedforward input received 

via the spread of the thalamo-cortical afferents. If the surround is maintained 

fixed (0°) while the center is stimulated with a bar oriented at 40°, the overall 

responsiveness of the cells which receive center stimulation increases relative to 

the situation when the center stimulus is oriented nearer the surround (30°), such 

that the center stimulus is able to elicit a higher response in the cell whose original 

tuning curve peaked at 30° (Figure 33C). This orientation-dependent increase in 

cortical responsiveness is further amplified by the cortical feedback. The repulsive 

shift in orientation specificity is thereby a byproduct of the interplay between 

surround inhibition, intracortical inhibition and cortical feedback.

Geometrical illusions o f orientation (Hering)

To test how the model performs in more complex situations resembling geometrical 

illusions (see Robinson, 1972, and Gillam, 1990, for a review), the upper left config­

uration of the Hering pattern (Figure 34A) was projected onto a window of 21 x 10 

locations (Figure 34B) of the network. The horizontal line of the Hering configura­

tion is divided by the obliques into six short line segments. Viewed from left to the 

right, each one of these horizontal short lines receives orientation surrounds that 

gradually approach 90°. According to the previously discussed context-dependent 

orientation shift effect, the magnitude of the shift is inversely proportional to the 

orientation mismatch between center and surround.
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F ig u re  34 Geometrical illusions of orientation. (A) Hering geometrical illusion. 

The geometrical arrangement of the oblique lines (surround) in the Hering 

configuration creates conditions for the two horizontal lines to be perceived 

as curved on the center. (B) The upper left Hering configuration is projected 

onto a window of the location map (dotted rectangle). Each of the short 

horizontal bars between the obliques has a size of 3 locations, excepting 

which has the size of 4 locations; the horizontal bar from outside the oblique 

bars has a size of 3 locations. Viewed from left to the right, the orientations 

of the obliques are: 20°, 30°, 40°, 50°, 70°, and 90°. (C) Percentage maximum 

response histograms of cells receiving A 1A2 , A0A3, A3A4, A4A5, and A5A6 as 

center stimulus. The x-axis represents the difference between the orientation 

specificity of different cells within the same hypercolumn and the 0° orien­

tation (for instance, a relative orientation of 10° represents a horizontal bar 

tilted 10° counterclockwise). The histograms have been obtained by averaging 

the percentage maximum responses of cells of the same orientation preference 

in the three adjacent hypercolumns responding to AjAo, A2A3, 4.3.44, .44.45, 

and .45.46 respectively. Different cells show maximum responses that qualita­

tively match the perceived orientation of each of the 5 line segments in the 

Hering configuration.
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In the case of the Hering pattern (Figure 34A), there is a greater shift (in a 

direction away from the surround) in orientation preference for the cells responding 

to the line segment AjAo than for the cells responding to the line segment A?A3. 

Also, there is a greater shift in orientation preference for the cells responding to 

the line segment A2A3 than for the cells responding to A3A4, and only a negligible 

shift for the cells responding to A4A5 and A5A6 (the surround approaches 90°). 

Simulation results (Figure 34C) show groups of cells peaking at orientations that 

match the illusory percept.

In a  similar way, the model can connect the surround effects with a large number 

of geometrical illusions, among the most representative being Poggendorff, Zollner. 

Lipps, Ehrenstein (Figure 35).

Discussion

This article proposes a model of orientation-dependent context effects that relies on 

a dynamic gain control mechanism controlled by the interplay between orientation- 

dependent long-range connections, intracortical excitatory and inhibitory connec­

tions, and cortical feedback. The model accounts for orientation-dependent sur­

round suppression and facilitation demonstrated in several studies, as well as for 

context-dependent orientation shift effects. Previous theoretical studies (Somers 

et al., 1995; Stemmier et al., 1995) have suggested that stimulus contrast is an 

independent variable that needs to be considered when the properties of classical 

and non-classical receptive field are evaluated. The present study focuses exclu­

sively on stimulus orientation as an independent variable that controls whether 

the surround role is either suppressive or facilitatory, depending on the relative 

orientation between center and surround stimuli. The model has the potential to 

explain the emergence of excitatory responses to cross-oriented stimuli presented in 

the classical receptive field in conjunction with iso-oriented surround stimulation 

(Sillito et al., 1995).
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F igure  35 Selected geometrical illusions that can be explained by the model. (A) 

Poggendorff - the oblique lines axe collinear. (B) Zollner - the vertical lines 

are parallel. (C) Lipps - the oblique lines in the middle are parallel. (D) 

Ehrenstein - the figure in the center is a square.
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The iso-oriented surround strongly suppresses responses to an iso-oriented cen­

ter stimulus; however, when an orthogonal stimulus is presented in the classical re­

ceptive field the "cross-oriented” cells receive their preferred stimulus in the center 

and are disinhibited from local inhibition through the dynamic gain control mech­

anism described previously. Therefore their response becomes supra-optimal and 

via the orientation spread of the cortical feedback from layer 6 (perhaps combined 

with corticogeniculate feedback from layer 6 to LGN) the response of "iso-oriented" 

cells increases. This view suggests a new role for cortical feedback (corticocortical 

and/or corticogeniculate projections), that is cortical feedback may have impor­

tant implications with respect to the capacity of the feedback projections to carry 

information about the visual context to the geniculate and layer 4C level (it is 

known that LGN and layer 4 lack the anatomical substrate that underlies the sur­

round modulation). In fact, Sillito et al. (personal communication) found both 

suppressive and supra-optimal responses in both LGN and simple cells in layer 

4. This type of interaction is impossible to explain if we rely only on long-range 

connections, without involving some form of feedback from the superficial layers 

of VI, or maybe cortical feedback from extrastriate areas.

Besides explaining several physiological phenomena, the orientation-dependent 

model presented here demonstrates that the same key principles can be used to 

investigate the nature of orientation-dependent psychophysical distortions of lines 

such as geometrical illusions of orientation (a demonstration is offered for the Her­

ing illusion). It can also be speculated that supra-optimal responses in VI induced 

by cross-oriented surround stimuli underlie the perceptual ”pop-out” , and they 

may also play a role in the figure-ground discrimination and texture segregation.

In addition to offering a new view on the orientation-dependent long-range in­

teractions in primary visual cortex by proposing a testable dynamic gain control 

mechanism at the level of local circuitry, the model generates other predictions: (a) 

if stimulus contrast, in addition to orientation, is varied, for a fixed relative orien­

tation between center and surround which generates the maximum effect in Sillito
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et al.’s (1995) experiment, e.g., surround tilted 60° relative to the cell’s preferred 

orientation, a low-contrast surround stimulus is able to abolish the supra-optimal 

response, even though the center is stimulated at low-contrast (it is known that 

low-contrast stimuli presented in the classical receptive field facilitate responses 

in the presence of a high-contrast surround); (b) experiments performed in VI of 

primates would reveal patterns of response similar to those shown in Figure 34B 

in relation to the Hering illusion. In addition, the model predicts that the tuning 

curve of cells with receptive fields covering the horizontal line gradually shift their 

preference in the presence of the oblique surround such that the shift magnitude 

should decrease as the surround gradually approaches 90°.
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Context-dependent changes in visual sensitivity and the 

Miiller-Lyer illusion

A bstract

Spatial vision is context dependent, i.e., the perceived visual attributes 

of a target stimulus depend on the context within which the target is 

placed. Geometrical illusions, which are context-induced subjective dis­

tortions of visual features, such as length, orientation, or curvature of 

lines, are the most striking example. Perhaps one of the best-known and 

most extensively investigated geometrical illusions, the Miiller-Lyer con­

figuration (Miiller-Lyer, 1889 : see Figure 36), in which a line appears 

short or long when it is flanked by outward or inward-pointing arrow­

heads, has fascinated researchers for over 100 years. Most proposed the­

ories of the Miiller-Lyer illusion rely on ’later’ processes, hypothesized 

to occur after ’early’ processing of the visual image by local mechanisms 

selective for features such as orientation and spatial frequency. These 

theories assume some sort of confusion, or blurring of features, that oc­

curs when observers judge the length of the horizontal bar: confusion of 

the embedded depth information (Gregory, 1963; Fisher, 1967), confu­

sion of the distance between arrowhead tips (Pressey, 1970; Erlebacher 

& Sekuler, 1969), confusion of the location of the arrowhead vertex (Chi- 

ang, 1968), or confusion during binding of contour fragments (Rensink 

Enns, 1995). One problem with these theories of Miiller-Lyer illusion is 

that they leave the concept of ’confusion’ largely undefined. In contrast, 

here I attempt to disambiguate this concept showing striking correla­

tions between the perceived length distortion in the Miiller-Lyer illusion 

and ’low level’ visual processing such as detectability of a luminance bar
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(taxget), in stimulus configurations that contain a single set of inward 

and outward-pointing arrowheads. I found that the inward-pointing ar­

rowhead improves target detectability, whereas the outward-pointing ar­

rowhead suppresses target detectability. Both effects diminish as taxget 

contrast, arrowhead angle, and target-arrowhead spatial disparity are 

increased. At larger distances between target and arrowhead the sup­

pressive effects axe completely abolished. The contrast detection results 

reported here suggest a common mechanism for taxget detectability and 

perceived extent. I explore the properties of a population model of ori­

entation detectors in visual cortex that relies on short and long-range 

horizontal cortical connections to explain the nature of both context- 

induced suppressive and facilitatory effects in contrast detection.
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F ig u re  36 Muller-Lyer geometrical illusion. The horizontal bar appears longer 

in the inward-pointing-arrowhead condition than in the outward-pointing- 

arrowhead condition.
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Introduction

Although different explanations for the occurrence of the Miiller-Lyer illusion have 

been advanced, e.g., depth theories (Gregory, 1963; Fischer, 1967 -  length distor­

tions are due to misapplication or confusion of size constancy to the two spans), 

averaging theories (Erlebacher Sc Sekuler, 1969; Pressey, 1970 -  the arrowheads 

interfere with the perceptual system for measuring span of the horizontals, and 

therefore observers confuse or average the distance between the arrowhead tips), 

displaced vertex theories (Chiang, 1968 -  the perceptual system miscalculates the 

location of the arrowhead vertex, displacing it toward the concave side), they do 

not agree on the basic perceptual principles that underlie the apparent distortions.

The present study analyzes the influence on the detectability of a target stimulus 

of visual contexts which resemble the Miiller-Lyer illusion (the perceived distance 

between two arrowheads is greater as the angle size increases, and this effect di­

minishes in magnitude as the arrowheads and line are separate more and more -  

Robinson, 1972). I show striking correlations between the Miiller-Lyer extent illu­

sion and target detectability in the same stimulus configurations. For simplicity, 

the first study used a configuration with only one set of fins (two segments that 

join to form a vertex), rather than two, to examine the detectability of a target 

stimulus (this configuration generates the extent effect originally reported with the 

Miiller-Lyer configuration -  Greene & Nelson, 1997).

Psychophysical tests

In individually conducted sessions, six adult human observers were instructed to 

detect the occurrence of a subthreshold vertical bar (target) while the target and 

a high-contrast arrowhead (context) were briefly flashed periodically. Figure 37A 

shows a schematic representation of stimulus configuration. A 8.5' square fixation 

point (FP) and a similar square attention point (AP) always remained on the 

screen. Subjects were instructed to fixate at FP and to attend to AP. At an
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observation distance of 100 cm the target consisted of a vertical line (1° x 36 ) 

against a uniform background of 35.71 cd/m 2. The target was always presented 

20' of arc to the right of AP and 3° downward and to the left of FP. Each trial 

consisted of a 2000 ms cycle. The taxget and/or the context were presented for 

200 ms followed by 1800 ms interstimulus interval. The taxget occurred randomly 

at one of four contrasts (0.46%, 0.93%, 1.4%, and 1.86%); the context (outward 

or inward arrowhead with the fin length of 52' x 14’) was always presented at the 

same high contrast (0.17 cd/m 2) as FP and AP. During each trial the target was 

presented alone, in conjunction with the context, or neither target nor context were 

presented. Whenever subjects detected the taxget they were instructed to press the 

mouse button. I measured the detectability ratio, defined as proportion correct 

detections, at four taxget contrasts in the following three conditions: (a) target 

alone; (b) target and outward-pointing arrowhead; (c) target and inward-pointing 

arrowhead.

Compared to when no taxget was shown, I found that for each individual sub­

ject taxget detection is facilitated by the inwaxd arrowhead and suppressed by the 

outward arrowhead (Figure 37B). Furthermore, again for each subject, as taxget 

contrast increases the magnitudes of both facilitatory and suppressive effects di­

minish. The averaged data  from all six subjects shows high levels of facilitation 

and suppression at low contrast, and gradual decline in the magnitude of both 

effects as taxget contrast increases. At low taxget contrast, the magnitudes of both 

effects, i.e., axound 80% for facilitatory effects and axound -60% for suppressive 

effects, axe by far beyond previously reported magnitudes of contextual interac­

tions as measured in visual sensitivity studies (Polat & Sagi, 1993; Kapadia et al., 

1995). At higher contrasts, the target is always seen.

In the second experiment, I added a symmetric arrowhead at the other end of the 

taxget (Figure 38A), such as to resemble the full Miiller-Lyer configuration. I also 

added a new taxget contrast level, 1.86%, and collected data from four subjects.
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F ig u re  37 Experiment 1. (A) One-arrowhead stimulus schematic representation. 

(B) % increase in target detectability as a function of target contrast. Target 

detection is improved in the inward-pointing-arrowhead condition and it is 

impaired in the outward-pointing-arrowhead condition. Both suppressive and 

facilitatory effects diminish with increasing target contrast. The arrowhead 

angles were 54° (outward pointing arrowhead) and 286° (inward pointing ar­

rowhead). I adjusted the proportion of positive responses in each of the four 

contrast conditions to compensate for guessing by presenting null conditions 

in which no target was presented (Kapadia et al., 1995). Performance levels 

at contrast 0.43% for subjects G. L. and L. T. are not presented because these 

subjects did not see the target at all at this contrast. (C) % increase in target 

detectability as a function of target contrast (average data). Percentages are 

calculated relative to the no-arrowhead condition.
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The data, summarized in Figures 38B and 38C, show that the facilitatory and 

suppressive effects found in the first experiment (see Figure 37) are amplified when 

the second arrowhead is added. It is noteworthy that these variations in target de­

tectability match qualitatively the results obtained with the Muller-Lyer illusion, 

in which a high contrast bar appears long or short when it is flanked by inward- 

or outward-pointing arrowheads. Performance levels from the contrast 0.43% con­

dition are not shown because three out of four subjects did not detect the target 

at all.

In the third experiment, I varied the half angle between the arrowhead fins (27°. 

53°, 90°, 117°, and 143°) and the distance between the tip of the arrowhead and 

the target (30\ 1°, and 1°30' of arc below the target base). The target contrast 

levels are identical to those used in Experiment 1. The stimulus configuration (an­

gle and distance) is shown schematically in Figure 39A. Each of the four subjects 

was asked to detect the target bar when these 60 conditions (5 angles x 3 distances 

x 4 contrasts) were randomly intermixed. For short distances between the target 

and the arrowhead, the effect of acute half angles is suppressive, whereas the effect 

of obtuse half angles is facilitatory, at all target contrast levels. Furthermore, the 

degree of facilitation and suppression increases monotonically with the decrease in 

arrowhead angle, and diminishes as target contrast increases (Figure 39B). How­

ever, when the distance between the target and the context is increased, both 

inhibitory and excitatory effects diminish drastically in strength (Figure 39B). An 

unexpected result is that when distance is further increased (e.g., 1°30/ of arc below 

the target base) the influence of the outward-pointing arrowhead changes from sup­

pression to facilitation (Figure 39B); the facilitatory effect of the outward-pointing 

arrowhead becomes stronger than the facilitatory effect of the inward-pointing ar­

rowhead (which provided the maximum facilitation at short distances), see Figure 

39C. This result matches qualitatively the Muller-Lyer extent illusion when the dis­

tance between the horizontal shaft and the two arrowheads increases (Yanagisawa, 

1939; Fellows, 1967).
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F igu re  38 Experiment 2. (A) Two-arrowhead stimulus schematic representation. 

I added a second, symmetric, arrowhead at the other end of the target (the 

same stimulus conditions as in Experiment 1). (B) % increase in target de­

tectability as a function of target contrast. Both suppressive and facilitatory 

effects are amplified compared to the one-arrowhead condition; the effects di­

minish with increasing target contrast. (C) % increase in target detectability 

as a function of target contrast (average data). In this analysis data from sub­

ject G. L., who showed levels of suppression and facilitation, were eliminated 

because they were out of the range in comparison with other subjects. If data 

from subject G. L. is included the overall effect is amplified. Percentages are 

calculated relative to the no-arrowhead condition.
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F ig u re  39 Experiment 3. (A) One-arrowhead stimulus schematic representation. 

I varied the half angle between the arrowhead fins (27°, 53°, 90°, 117°, and 

143°) and the distance between the tip of the arrowhead and the target (30’, 

1°, and 1°30' of arc below the target base). The target contrast levels are 

identical to those used in Experiment 1. (B) % increase in target detectabil­

ity as a function of arrowhead angle, arrowhead distance, and target con­

trast (average data). The suppressive effects diminish and the facilitatory 

effects increase as the arrowhead half angle becomes more obtuse. The ef­

fect of the outward-pointing-arrowhead changes from strong suppression to 

strong facilitation as the distance between target and context increases. Per­

formance levels from the contrast 0.43% condition are not shown because 

three out of four subjects did not detect the target at all. Both suppressive 

and facilitatory effects diminish with increasing target contrast. Legends -  

black: 0.5°, gray: 1°, white: 1.5°. (C) % increase in target detectability as 

a function of arrowhead distance and target contrast (average data). The 

analysis was performed for arrowhead angles identical to those in Experiment 

1. Both suppressive and facilitatory effects diminish with increasing distance 

between target and context. At distance 1°30' the facilitatory effect of the 

outward-pointing-arrowhead becomes stronger than the facilitatory effect of 

the inward-pointing-arrowhead (the two curves intersect). Percentages are 

calculated relative to the no-arrowhead condition.
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The m odel

The surround effects reported here favor ’low level’ mechanisms of the Muller-Lyer 

illusion. In fact, I found a correlate of this illusion in the detectability' domain. 

To explain these results, and related phenomena (Polat Sagi, 1993; Kapadia 

et al., 1995), I have analyzed the properties of a population model of excitatory 

and inhibitory orientation detectors in visual cortex. This level of explanation was 

chosen because data from psychophysical studies of contrast detection threshold in 

human observers are correlated with single-cell recording in awake monkeys (Ka­

padia et al., 1995) and with visual evoked potentials in human observers (Polat &: 

Sagi, 1993), thus suggesting a physiological basis for surround modulation. Figure 

40A shows a schematic representation of the model. I model populations of local 

excitatory and inhibitory cells (cells which are activated by a stimulus presented 

in the classical receptive field, which is the region over which a stimulus evokes a 

suprathreshold response) and excitatory cells in the surround (also known as non- 

classical receptive field), and focus on local population dynamics. Sensory input 

indirectly activates both cortical excitatory and inhibitory cells through feedfor­

ward connections. The horizontal bar (center stimulus) is projected onto both local 

excitatory and inhibitory populations within the classical receptive field (CRF). 

The arrowhead context stimulus is projected onto excitatory cells in the surround 

(we do not model surround inhibitory cells because their intrinsic connections axe 

purely local). Members of the local excitatory population are interconnected by 

recurrent excitatory synapses, and members of the inhibitory population axe inter­

connected by recurrent inhibitory synapses. Local excitatory cells excite inhibitory 

cells, which in turn inhibit local excitatory cells.

Excitatory and inhibitory populations axe modeled separately as threshold units 

with firing rates decribed by:

dE
—  =  r e( N f eWfeI N P  +  NrewreE  +  ISieeweeS)(l -  E) -  ftuWuIE  (17) 

for the excitatory population, and
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—  =  ri (Nf iWfi INP + NlewleE  +  NeiweiS){ 1 -  I) -  (18)
a t

for the inhibitory population. Each unit becomes active when its firing rate is 

greater than a threshold (inhibitory cells have a higher threshold, 0.8, than excita­

tory cells, 0.3). Model parameters were chosen such that to ensure a ratio around 

4:1 between excitatory and inhibitory cells. Inhibitory cells fire at a higher rate 

(rate constant r,- =  0.1) than excitatory cells (rate constant re =  0.04). The param­

eters are: N /e = N /i =  50 - number of feedforward projections to excitatory (fe) 

and inhibitory (fi) cells; Nre =  50 - number of projections from local (recurrent) 

excitatory cells; iV  ̂ =  10 - number of projections from local (recurrent) inhibitory 

cells; Nn =  10 - number of projections from local inhibitory cells to local exci­

tatory cells; Nie =  40 - number of projections from local excitatory cells to local 

inhibitory cells; Nee =  1000 - number of long-range projections from surround cells 

to excitatory cells; iV et- =  250 -  number of long-range projections from surround 

cells to inhibitory cells; w/e =  Wfi = 0.08 - connection strengths of feedforward 

projections to both excitatory (fe) and inhibitory (fi) cells; wre =  u/n- =  0.005 - 

connection strengths of recurrent excitatory (re) and inhibitory (ri) projections: 

wie = wu =  0.1 - connection strengths of local excitatory projections to inhibitory 

(le) cells and local inhibitory projections to excitatory (li) cells; wee = wei =  0.1 

- connection strengths of long-range excitatory projections to both excitatory (ee) 

and inhibitory (ei) cells; IN P  is the total instantaneous input to both inhibitory- 

and excitatory cells; S  = 0.02s •enp_0 08(z?‘+° ' ) - total input from excitatory cells in 

the surround, where D and O are the distance and orientation mismatch between 

center and surround, and s is the firing rate of the surround cells.

Surround effects are modeled using long-range excitatory connections on both 

local populations of excitatory and inhibitory cells. The strength of long-range hor­

izontal connections is both orientation and distance-dependent, with the synaptic 

strengths decaying exponentially with the increase in the relative orientation pref­

erence between surround and center cells and with the increase in the distance
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between center and surround. Surround population is modeled by a similar equa­

tion to those used to model local excitatory and inhibitory cells, except that cells 

in the surround only receive feedforward projections with a density of 50.

Figure 40B shows key experimental da ta  in comparison with model predictions 

(see explanations in the figure legends). For short distances between center and sur­

round (e.g., 30' in our second experiment) the outward-pointing arrowhead excites 

strongly both local excitatory and inhibitory cells within CRF (we define the CRF 

as the region covering the target end which is closer to the arrowhead). Because the 

inhibitory cells typically fire at a higher rate and they have a higher threshold than 

excitatory cells the net effect is inhibitory (Weliky et al., 1995; Toth et al., 1996). 

and detectability of the target stimulus is impaired. In contrast, when the sur­

round stimulus is the inward-pointing arrowhead, which is located outside CRF. 

the more distant excitatory cells in the surround activate only weakly the local 

inhibitory cells. The net effect is excitatory, and detectability of the target stimu­

lus is enhanced. Both effects are orientation-dependent; because the strengths of 

long-range connections decay with the increase in the relative orientation between 

target and arrowhead there is both stronger suppression and facilitation when the 

arrowhead angle is more acute. However, when the distance between the hori­

zontal bar and arrowhead increases the surround influence weakens, such that if 

distance is further increased the higher threshold local inhibition is shut off com­

pletely. In this situation, the influence of the arrowhead reverses; there is stronger 

facilitation by the outward-pointing arrowhead (surround is closer to the center, 

e.g., 1° or 1°30' in our experiments) than by the inward-pointing arrowhead (in 

the simulations I calculate the distance between center and surround by estimating 

the distance between the center of each arrowhead fin and the closest end of the 

horizontal bar).
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F igure  40 (A) Schematic representation of the population model. Excitatory con­

nections between populations are shown as open circles: inhibitory ones, as 

filled circles. The horizontal bar stimulus is projected onto both local excita­

tory and inhibitory populations within the classical receptive field (CRF). The 

arrowhead context stimulus is projected onto excitatory ceils in the surround. 

(B) Model predictions (%response magnitude) are compared with key experi­

mental results (% increase in target detectability). Percentages are calculated 

relative to the no-arrowhead condition. Stimulus configurations are repre­

sented as angle/distance (from left to right): 27°/30\ 143°/30\ 27°/l°30/, 

143°/1°30/; Target contrast is 1.4%.
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Discussion

Three conclusions can be drawn from the present studies: (a) As a function of 

target contrast, surround orientation and spatial offset there is a continuum of 

surround modulations ranging from strong inhibition to strong excitation. Previ­

ous results (Polat & Sagi, 1993; Kapadia et al., 1995) reported both facilitatory 

and weak suppressive effects induced by a suprathreshold bar that flanks a collinear 

subthreshold target, and by Gabor patches surrounding a target Gabor patch of 

similar orientation and spatial frequency, (b) The present findings are consistent 

with short and long-range receptive field interactions in primary visual cortex (We- 

liky et al., 1995; Toth et al., 1996) and suggest a physiological basis for surround 

modulation. A population model of orientation detectors in visual cortex explains 

the present results as a byproduct of orientation and distance effects of long-range 

horizontal connections. The magnitudes of both facilitatory and suppressive effects 

that we found depend on the collinearity between target and surround. This is 

consistent with recent studies in primary visual cortex of tree shrews (Fitzpatrick. 

1996) and squirrel monkeys (Blasdel et al., 1995) showing a link between orienta­

tion preference and the axial symmetry of lateral connections in the upper layers of 

striate cortex. Relevant to these investigations is the fact that in our pilot studies 

(Dragoi Lockhead -  unpublished data) we found that when the arrowhead is 

displaced laterally with respect to the symmetry axis of the target stimulus the 

effects on target detectability are weak, or none, (c) The effect of the arrowhead 

surround on the detection of a briefly exposed target stimulus (200 ms, which is 

less than a saccade reaction time) parallels the classical Muller-Lyer effect for a 

freely viewed pattern: facilitation in the case of the inward-pointing-arrowhead 

configuration (enhanced detectability in the present experiment and longer shaft 

in the Muller-Lyer effect) and suppression in the case of the outward-pointing- 

arrowhead configuration (diminished detectability in our experiment and shorter 

shaft in the Miiiler-Lyer effect). These spatial interactions for target detectability 

and for the Miiiler-Lyer illusion are nonlinear functions of contrast, orientation.
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and distance. I disambiguate the concept of ’confusion’ typically associated with 

the perceived extent in Muller-Lyer illusion suggesting that the same ’low level’ 

mechanism responsible for large modulations in visual sensitivity at low contrasts 

is involved in ’higher level’ processing when perceiving exact location of horizontal 

lines flanked by two arrowheads in the Miiiler-Lyer configuration.
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A ppendix

All the units described in the text vary between 0 and 1. All the computer simula­

tions have been performed equaling the integration step (1.2 for all the simulated 

paradigms) with a formal time unit (1 second). A reinforcement of variable magni­

tude is applied according to all the simulated reinforcement schedules. The model's 

predictions are consistent with experimental data for a large range of coefficients. 

Parameter values used in all simulations are au =  1 • 10~4, oco = 0.05. 03 =  0.2. 

0:4 =  Q6 =  <29 =  c t n  = 0.1, 0 5  =  0.5, a 7 =  8  • 10-3, a $  = a l() = 5 • 10-3. 

<*12 =  5 • 10-5, a i3 =  1.5 • 10-4, a u  =  0.03.
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